Experimental quantum adversarial learning with programmable superconducting qubits Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2204.01738
Quantum computing promises to enhance machine learning and artificial intelligence. Different quantum algorithms have been proposed to improve a wide spectrum of machine learning tasks. Yet, recent theoretical works show that, similar to traditional classifiers based on deep classical neural networks, quantum classifiers would suffer from the vulnerability problem: adding tiny carefully-crafted perturbations to the legitimate original data samples would facilitate incorrect predictions at a notably high confidence level. This will pose serious problems for future quantum machine learning applications in safety and security-critical scenarios. Here, we report the first experimental demonstration of quantum adversarial learning with programmable superconducting qubits. We train quantum classifiers, which are built upon variational quantum circuits consisting of ten transmon qubits featuring average lifetimes of 150 $μ$s, and average fidelities of simultaneous single- and two-qubit gates above 99.94% and 99.4% respectively, with both real-life images (e.g., medical magnetic resonance imaging scans) and quantum data. We demonstrate that these well-trained classifiers (with testing accuracy up to 99%) can be practically deceived by small adversarial perturbations, whereas an adversarial training process would significantly enhance their robustness to such perturbations. Our results reveal experimentally a crucial vulnerability aspect of quantum learning systems under adversarial scenarios and demonstrate an effective defense strategy against adversarial attacks, which provide a valuable guide for quantum artificial intelligence applications with both near-term and future quantum devices.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2204.01738
- https://arxiv.org/pdf/2204.01738
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4224903505
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4224903505Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2204.01738Digital Object Identifier
- Title
-
Experimental quantum adversarial learning with programmable superconducting qubitsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-04-04Full publication date if available
- Authors
-
Wenhui Ren, Weikang Li, Shibo Xu, Ke Wang, Wenjie Jiang, Feitong Jin, Xuhao Zhu, Jiachen Chen, Zixuan Song, Peng Fei Zhang, Hang Dong, Xu Zhang, Jinfeng Deng, Yu Gao, Chuanyu Zhang, Yaozu Wu, Bing Zhang, Qiujiang Guo, Hekang Li, Zhen Wang, Jacob Biamonte, Chao Song, Dong-Ling Deng, Haijing WangList of authors in order
- Landing page
-
https://arxiv.org/abs/2204.01738Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2204.01738Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2204.01738Direct OA link when available
- Concepts
-
Qubit, Superconducting quantum computing, Adversarial system, Superconductivity, Quantum, Quantum mechanics, Physics, Computer science, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2022: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4224903505 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2204.01738 |
| ids.doi | https://doi.org/10.48550/arxiv.2204.01738 |
| ids.openalex | https://openalex.org/W4224903505 |
| fwci | 0.39159764 |
| type | preprint |
| title | Experimental quantum adversarial learning with programmable superconducting qubits |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10682 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9135000109672546 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Quantum Computing Algorithms and Architecture |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C203087015 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6794987916946411 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q378201 |
| concepts[0].display_name | Qubit |
| concepts[1].id | https://openalex.org/C119382340 |
| concepts[1].level | 4 |
| concepts[1].score | 0.6060470342636108 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7643176 |
| concepts[1].display_name | Superconducting quantum computing |
| concepts[2].id | https://openalex.org/C37736160 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5717829465866089 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[2].display_name | Adversarial system |
| concepts[3].id | https://openalex.org/C54101563 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5416749715805054 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q124131 |
| concepts[3].display_name | Superconductivity |
| concepts[4].id | https://openalex.org/C84114770 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4964788556098938 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q46344 |
| concepts[4].display_name | Quantum |
| concepts[5].id | https://openalex.org/C62520636 |
| concepts[5].level | 1 |
| concepts[5].score | 0.37757834792137146 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[5].display_name | Quantum mechanics |
| concepts[6].id | https://openalex.org/C121332964 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3464028835296631 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[6].display_name | Physics |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.2903451919555664 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.15789341926574707 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/qubit |
| keywords[0].score | 0.6794987916946411 |
| keywords[0].display_name | Qubit |
| keywords[1].id | https://openalex.org/keywords/superconducting-quantum-computing |
| keywords[1].score | 0.6060470342636108 |
| keywords[1].display_name | Superconducting quantum computing |
| keywords[2].id | https://openalex.org/keywords/adversarial-system |
| keywords[2].score | 0.5717829465866089 |
| keywords[2].display_name | Adversarial system |
| keywords[3].id | https://openalex.org/keywords/superconductivity |
| keywords[3].score | 0.5416749715805054 |
| keywords[3].display_name | Superconductivity |
| keywords[4].id | https://openalex.org/keywords/quantum |
| keywords[4].score | 0.4964788556098938 |
| keywords[4].display_name | Quantum |
| keywords[5].id | https://openalex.org/keywords/quantum-mechanics |
| keywords[5].score | 0.37757834792137146 |
| keywords[5].display_name | Quantum mechanics |
| keywords[6].id | https://openalex.org/keywords/physics |
| keywords[6].score | 0.3464028835296631 |
| keywords[6].display_name | Physics |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.2903451919555664 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.15789341926574707 |
| keywords[8].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2204.01738 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2204.01738 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2204.01738 |
| locations[1].id | doi:10.48550/arxiv.2204.01738 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2204.01738 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5003833903 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3644-9347 |
| authorships[0].author.display_name | Wenhui Ren |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ren, Wenhui |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100758404 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7137-5390 |
| authorships[1].author.display_name | Weikang Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Weikang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101662289 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0305-2351 |
| authorships[2].author.display_name | Shibo Xu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xu, Shibo |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100360120 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5388-8643 |
| authorships[3].author.display_name | Ke Wang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wang, Ke |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5015312371 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1852-0429 |
| authorships[4].author.display_name | Wenjie Jiang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jiang, Wenjie |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5061113803 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0789-8207 |
| authorships[5].author.display_name | Feitong Jin |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jin, Feitong |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5067497447 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-1318-8367 |
| authorships[6].author.display_name | Xuhao Zhu |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Zhu, Xuhao |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5076695496 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-1941-2326 |
| authorships[7].author.display_name | Jiachen Chen |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Chen, Jiachen |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5101855758 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-1089-9251 |
| authorships[8].author.display_name | Zixuan Song |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Song, Zixuan |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5101961222 |
| authorships[9].author.orcid | https://orcid.org/0009-0001-7982-666X |
| authorships[9].author.display_name | Peng Fei Zhang |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Zhang, Pengfei |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5035163413 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-6828-6891 |
| authorships[10].author.display_name | Hang Dong |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Dong, Hang |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5100437265 |
| authorships[11].author.orcid | https://orcid.org/0009-0006-8938-2085 |
| authorships[11].author.display_name | Xu Zhang |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Zhang, Xu |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5048814479 |
| authorships[12].author.orcid | |
| authorships[12].author.display_name | Jinfeng Deng |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Deng, Jinfeng |
| authorships[12].is_corresponding | False |
| authorships[13].author.id | https://openalex.org/A5100614908 |
| authorships[13].author.orcid | https://orcid.org/0000-0003-0007-2197 |
| authorships[13].author.display_name | Yu Gao |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Gao, Yu |
| authorships[13].is_corresponding | False |
| authorships[14].author.id | https://openalex.org/A5102006585 |
| authorships[14].author.orcid | https://orcid.org/0000-0002-5083-5239 |
| authorships[14].author.display_name | Chuanyu Zhang |
| authorships[14].author_position | middle |
| authorships[14].raw_author_name | Zhang, Chuanyu |
| authorships[14].is_corresponding | False |
| authorships[15].author.id | https://openalex.org/A5054147216 |
| authorships[15].author.orcid | https://orcid.org/0000-0002-1137-4660 |
| authorships[15].author.display_name | Yaozu Wu |
| authorships[15].author_position | middle |
| authorships[15].raw_author_name | Wu, Yaozu |
| authorships[15].is_corresponding | False |
| authorships[16].author.id | https://openalex.org/A5100389704 |
| authorships[16].author.orcid | https://orcid.org/0000-0002-9725-2524 |
| authorships[16].author.display_name | Bing Zhang |
| authorships[16].author_position | middle |
| authorships[16].raw_author_name | Zhang, Bing |
| authorships[16].is_corresponding | False |
| authorships[17].author.id | https://openalex.org/A5059194073 |
| authorships[17].author.orcid | https://orcid.org/0000-0003-1093-3405 |
| authorships[17].author.display_name | Qiujiang Guo |
| authorships[17].author_position | middle |
| authorships[17].raw_author_name | Guo, Qiujiang |
| authorships[17].is_corresponding | False |
| authorships[18].author.id | https://openalex.org/A5044985434 |
| authorships[18].author.orcid | https://orcid.org/0000-0003-3914-4979 |
| authorships[18].author.display_name | Hekang Li |
| authorships[18].author_position | middle |
| authorships[18].raw_author_name | Li, Hekang |
| authorships[18].is_corresponding | False |
| authorships[19].author.id | https://openalex.org/A5100422262 |
| authorships[19].author.orcid | https://orcid.org/0000-0001-6106-2457 |
| authorships[19].author.display_name | Zhen Wang |
| authorships[19].author_position | middle |
| authorships[19].raw_author_name | Wang, Zhen |
| authorships[19].is_corresponding | False |
| authorships[20].author.id | https://openalex.org/A5079523895 |
| authorships[20].author.orcid | https://orcid.org/0000-0002-0590-3327 |
| authorships[20].author.display_name | Jacob Biamonte |
| authorships[20].author_position | middle |
| authorships[20].raw_author_name | Biamonte, Jacob |
| authorships[20].is_corresponding | False |
| authorships[21].author.id | https://openalex.org/A5100423622 |
| authorships[21].author.orcid | https://orcid.org/0000-0003-2140-0364 |
| authorships[21].author.display_name | Chao Song |
| authorships[21].author_position | middle |
| authorships[21].raw_author_name | Song, Chao |
| authorships[21].is_corresponding | False |
| authorships[22].author.id | https://openalex.org/A5057614578 |
| authorships[22].author.orcid | https://orcid.org/0000-0002-1042-4646 |
| authorships[22].author.display_name | Dong-Ling Deng |
| authorships[22].author_position | middle |
| authorships[22].raw_author_name | Deng, Dong-Ling |
| authorships[22].is_corresponding | False |
| authorships[23].author.id | https://openalex.org/A5079367052 |
| authorships[23].author.orcid | https://orcid.org/0009-0004-5969-135X |
| authorships[23].author.display_name | Haijing Wang |
| authorships[23].author_position | last |
| authorships[23].raw_author_name | Wang, H. |
| authorships[23].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2204.01738 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Experimental quantum adversarial learning with programmable superconducting qubits |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10682 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9135000109672546 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Quantum Computing Algorithms and Architecture |
| related_works | https://openalex.org/W1680232461, https://openalex.org/W2904516837, https://openalex.org/W2132913283, https://openalex.org/W2890516405, https://openalex.org/W4237668728, https://openalex.org/W4300095522, https://openalex.org/W2462906044, https://openalex.org/W2082861178, https://openalex.org/W2919932838, https://openalex.org/W2152843126 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2204.01738 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2204.01738 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2204.01738 |
| primary_location.id | pmh:oai:arXiv.org:2204.01738 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2204.01738 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2204.01738 |
| publication_date | 2022-04-04 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 18, 64, 186, 208 |
| abstract_inverted_index.We | 100, 149 |
| abstract_inverted_index.an | 170, 199 |
| abstract_inverted_index.at | 63 |
| abstract_inverted_index.be | 162 |
| abstract_inverted_index.by | 165 |
| abstract_inverted_index.in | 80 |
| abstract_inverted_index.of | 21, 92, 112, 119, 125, 190 |
| abstract_inverted_index.on | 36 |
| abstract_inverted_index.to | 3, 16, 32, 53, 159, 179 |
| abstract_inverted_index.up | 158 |
| abstract_inverted_index.we | 86 |
| abstract_inverted_index.150 | 120 |
| abstract_inverted_index.Our | 182 |
| abstract_inverted_index.and | 7, 82, 122, 128, 133, 146, 197, 219 |
| abstract_inverted_index.are | 105 |
| abstract_inverted_index.can | 161 |
| abstract_inverted_index.for | 74, 211 |
| abstract_inverted_index.ten | 113 |
| abstract_inverted_index.the | 46, 54, 88 |
| abstract_inverted_index.99%) | 160 |
| abstract_inverted_index.This | 69 |
| abstract_inverted_index.Yet, | 25 |
| abstract_inverted_index.been | 14 |
| abstract_inverted_index.both | 137, 217 |
| abstract_inverted_index.data | 57 |
| abstract_inverted_index.deep | 37 |
| abstract_inverted_index.from | 45 |
| abstract_inverted_index.have | 13 |
| abstract_inverted_index.high | 66 |
| abstract_inverted_index.pose | 71 |
| abstract_inverted_index.show | 29 |
| abstract_inverted_index.such | 180 |
| abstract_inverted_index.that | 151 |
| abstract_inverted_index.tiny | 50 |
| abstract_inverted_index.upon | 107 |
| abstract_inverted_index.wide | 19 |
| abstract_inverted_index.will | 70 |
| abstract_inverted_index.with | 96, 136, 216 |
| abstract_inverted_index.(with | 155 |
| abstract_inverted_index.99.4% | 134 |
| abstract_inverted_index.Here, | 85 |
| abstract_inverted_index.above | 131 |
| abstract_inverted_index.based | 35 |
| abstract_inverted_index.built | 106 |
| abstract_inverted_index.data. | 148 |
| abstract_inverted_index.first | 89 |
| abstract_inverted_index.gates | 130 |
| abstract_inverted_index.guide | 210 |
| abstract_inverted_index.small | 166 |
| abstract_inverted_index.that, | 30 |
| abstract_inverted_index.their | 177 |
| abstract_inverted_index.these | 152 |
| abstract_inverted_index.train | 101 |
| abstract_inverted_index.under | 194 |
| abstract_inverted_index.which | 104, 206 |
| abstract_inverted_index.works | 28 |
| abstract_inverted_index.would | 43, 59, 174 |
| abstract_inverted_index.$μ$s, | 121 |
| abstract_inverted_index.(e.g., | 140 |
| abstract_inverted_index.99.94% | 132 |
| abstract_inverted_index.adding | 49 |
| abstract_inverted_index.aspect | 189 |
| abstract_inverted_index.future | 75, 220 |
| abstract_inverted_index.images | 139 |
| abstract_inverted_index.level. | 68 |
| abstract_inverted_index.neural | 39 |
| abstract_inverted_index.qubits | 115 |
| abstract_inverted_index.recent | 26 |
| abstract_inverted_index.report | 87 |
| abstract_inverted_index.reveal | 184 |
| abstract_inverted_index.safety | 81 |
| abstract_inverted_index.scans) | 145 |
| abstract_inverted_index.suffer | 44 |
| abstract_inverted_index.tasks. | 24 |
| abstract_inverted_index.Quantum | 0 |
| abstract_inverted_index.against | 203 |
| abstract_inverted_index.average | 117, 123 |
| abstract_inverted_index.crucial | 187 |
| abstract_inverted_index.defense | 201 |
| abstract_inverted_index.enhance | 4, 176 |
| abstract_inverted_index.imaging | 144 |
| abstract_inverted_index.improve | 17 |
| abstract_inverted_index.machine | 5, 22, 77 |
| abstract_inverted_index.medical | 141 |
| abstract_inverted_index.notably | 65 |
| abstract_inverted_index.process | 173 |
| abstract_inverted_index.provide | 207 |
| abstract_inverted_index.quantum | 11, 41, 76, 93, 102, 109, 147, 191, 212, 221 |
| abstract_inverted_index.qubits. | 99 |
| abstract_inverted_index.results | 183 |
| abstract_inverted_index.samples | 58 |
| abstract_inverted_index.serious | 72 |
| abstract_inverted_index.similar | 31 |
| abstract_inverted_index.single- | 127 |
| abstract_inverted_index.systems | 193 |
| abstract_inverted_index.testing | 156 |
| abstract_inverted_index.whereas | 169 |
| abstract_inverted_index.accuracy | 157 |
| abstract_inverted_index.attacks, | 205 |
| abstract_inverted_index.circuits | 110 |
| abstract_inverted_index.deceived | 164 |
| abstract_inverted_index.devices. | 222 |
| abstract_inverted_index.learning | 6, 23, 78, 95, 192 |
| abstract_inverted_index.magnetic | 142 |
| abstract_inverted_index.original | 56 |
| abstract_inverted_index.problem: | 48 |
| abstract_inverted_index.problems | 73 |
| abstract_inverted_index.promises | 2 |
| abstract_inverted_index.proposed | 15 |
| abstract_inverted_index.spectrum | 20 |
| abstract_inverted_index.strategy | 202 |
| abstract_inverted_index.training | 172 |
| abstract_inverted_index.transmon | 114 |
| abstract_inverted_index.valuable | 209 |
| abstract_inverted_index.Different | 10 |
| abstract_inverted_index.classical | 38 |
| abstract_inverted_index.computing | 1 |
| abstract_inverted_index.effective | 200 |
| abstract_inverted_index.featuring | 116 |
| abstract_inverted_index.incorrect | 61 |
| abstract_inverted_index.lifetimes | 118 |
| abstract_inverted_index.near-term | 218 |
| abstract_inverted_index.networks, | 40 |
| abstract_inverted_index.real-life | 138 |
| abstract_inverted_index.resonance | 143 |
| abstract_inverted_index.scenarios | 196 |
| abstract_inverted_index.two-qubit | 129 |
| abstract_inverted_index.algorithms | 12 |
| abstract_inverted_index.artificial | 8, 213 |
| abstract_inverted_index.confidence | 67 |
| abstract_inverted_index.consisting | 111 |
| abstract_inverted_index.facilitate | 60 |
| abstract_inverted_index.fidelities | 124 |
| abstract_inverted_index.legitimate | 55 |
| abstract_inverted_index.robustness | 178 |
| abstract_inverted_index.scenarios. | 84 |
| abstract_inverted_index.adversarial | 94, 167, 171, 195, 204 |
| abstract_inverted_index.classifiers | 34, 42, 154 |
| abstract_inverted_index.demonstrate | 150, 198 |
| abstract_inverted_index.practically | 163 |
| abstract_inverted_index.predictions | 62 |
| abstract_inverted_index.theoretical | 27 |
| abstract_inverted_index.traditional | 33 |
| abstract_inverted_index.variational | 108 |
| abstract_inverted_index.applications | 79, 215 |
| abstract_inverted_index.classifiers, | 103 |
| abstract_inverted_index.experimental | 90 |
| abstract_inverted_index.intelligence | 214 |
| abstract_inverted_index.programmable | 97 |
| abstract_inverted_index.simultaneous | 126 |
| abstract_inverted_index.well-trained | 153 |
| abstract_inverted_index.demonstration | 91 |
| abstract_inverted_index.intelligence. | 9 |
| abstract_inverted_index.perturbations | 52 |
| abstract_inverted_index.respectively, | 135 |
| abstract_inverted_index.significantly | 175 |
| abstract_inverted_index.vulnerability | 47, 188 |
| abstract_inverted_index.experimentally | 185 |
| abstract_inverted_index.perturbations, | 168 |
| abstract_inverted_index.perturbations. | 181 |
| abstract_inverted_index.superconducting | 98 |
| abstract_inverted_index.carefully-crafted | 51 |
| abstract_inverted_index.security-critical | 83 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 24 |
| citation_normalized_percentile.value | 0.60498469 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |