Expert-Level Bone Metastasis Detection on CT with Deep Learning Models Considering Lesion Visibility: Multi-Center Development and Evaluation Article Swipe
Jung Oh Lee
,
Dong Hyun Kim
,
Hee‐Dong Chae
,
Eugene Lee
,
Ji Hee Kang
,
Ji Hyun Lee
,
Hyo Jin Kim
,
Jiwoon Seo
,
Jee Won Chai
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5142805
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5142805
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.2139/ssrn.5142805
- OA Status
- green
- Cited By
- 1
- References
- 28
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407763409
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407763409Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2139/ssrn.5142805Digital Object Identifier
- Title
-
Expert-Level Bone Metastasis Detection on CT with Deep Learning Models Considering Lesion Visibility: Multi-Center Development and EvaluationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Jung Oh Lee, Dong Hyun Kim, Hee‐Dong Chae, Eugene Lee, Ji Hee Kang, Ji Hyun Lee, Hyo Jin Kim, Jiwoon Seo, Jee Won ChaiList of authors in order
- Landing page
-
https://doi.org/10.2139/ssrn.5142805Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2139/ssrn.5142805Direct OA link when available
- Concepts
-
Visibility, Lesion, Center (category theory), Medicine, Artificial intelligence, Deep learning, Computer science, Radiology, Medical physics, Pathology, Optics, Chemistry, Physics, CrystallographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
28Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407763409 |
|---|---|
| doi | https://doi.org/10.2139/ssrn.5142805 |
| ids.doi | https://doi.org/10.2139/ssrn.5142805 |
| ids.openalex | https://openalex.org/W4407763409 |
| fwci | 4.63396625 |
| type | preprint |
| title | Expert-Level Bone Metastasis Detection on CT with Deep Learning Models Considering Lesion Visibility: Multi-Center Development and Evaluation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12422 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[1].id | https://openalex.org/T10522 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9990000128746033 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Medical Imaging Techniques and Applications |
| topics[2].id | https://openalex.org/T12386 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9987999796867371 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Advanced X-ray and CT Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C123403432 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7835112810134888 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q654068 |
| concepts[0].display_name | Visibility |
| concepts[1].id | https://openalex.org/C2781156865 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5367814898490906 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q827023 |
| concepts[1].display_name | Lesion |
| concepts[2].id | https://openalex.org/C2779463800 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5015430450439453 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5062222 |
| concepts[2].display_name | Center (category theory) |
| concepts[3].id | https://openalex.org/C71924100 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4613203704357147 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[3].display_name | Medicine |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4407132565975189 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.44010382890701294 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.393640398979187 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C126838900 |
| concepts[7].level | 1 |
| concepts[7].score | 0.34318414330482483 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[7].display_name | Radiology |
| concepts[8].id | https://openalex.org/C19527891 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3374713063240051 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1120908 |
| concepts[8].display_name | Medical physics |
| concepts[9].id | https://openalex.org/C142724271 |
| concepts[9].level | 1 |
| concepts[9].score | 0.22359007596969604 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[9].display_name | Pathology |
| concepts[10].id | https://openalex.org/C120665830 |
| concepts[10].level | 1 |
| concepts[10].score | 0.09405940771102905 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[10].display_name | Optics |
| concepts[11].id | https://openalex.org/C185592680 |
| concepts[11].level | 0 |
| concepts[11].score | 0.09171175956726074 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[11].display_name | Chemistry |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.06605371832847595 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C8010536 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q160398 |
| concepts[13].display_name | Crystallography |
| keywords[0].id | https://openalex.org/keywords/visibility |
| keywords[0].score | 0.7835112810134888 |
| keywords[0].display_name | Visibility |
| keywords[1].id | https://openalex.org/keywords/lesion |
| keywords[1].score | 0.5367814898490906 |
| keywords[1].display_name | Lesion |
| keywords[2].id | https://openalex.org/keywords/center |
| keywords[2].score | 0.5015430450439453 |
| keywords[2].display_name | Center (category theory) |
| keywords[3].id | https://openalex.org/keywords/medicine |
| keywords[3].score | 0.4613203704357147 |
| keywords[3].display_name | Medicine |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.4407132565975189 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.44010382890701294 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.393640398979187 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/radiology |
| keywords[7].score | 0.34318414330482483 |
| keywords[7].display_name | Radiology |
| keywords[8].id | https://openalex.org/keywords/medical-physics |
| keywords[8].score | 0.3374713063240051 |
| keywords[8].display_name | Medical physics |
| keywords[9].id | https://openalex.org/keywords/pathology |
| keywords[9].score | 0.22359007596969604 |
| keywords[9].display_name | Pathology |
| keywords[10].id | https://openalex.org/keywords/optics |
| keywords[10].score | 0.09405940771102905 |
| keywords[10].display_name | Optics |
| keywords[11].id | https://openalex.org/keywords/chemistry |
| keywords[11].score | 0.09171175956726074 |
| keywords[11].display_name | Chemistry |
| keywords[12].id | https://openalex.org/keywords/physics |
| keywords[12].score | 0.06605371832847595 |
| keywords[12].display_name | Physics |
| language | en |
| locations[0].id | doi:10.2139/ssrn.5142805 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172589 |
| locations[0].source.issn | 1556-5068 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1556-5068 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | SSRN Electronic Journal |
| locations[0].source.host_organization | https://openalex.org/I1318003438 |
| locations[0].source.host_organization_name | RELX Group (Netherlands) |
| locations[0].source.host_organization_lineage | https://openalex.org/I1318003438 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.2139/ssrn.5142805 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5045674070 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1962-1520 |
| authorships[0].author.display_name | Jung Oh Lee |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jung Oh Lee |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100413818 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3871-7002 |
| authorships[1].author.display_name | Dong Hyun Kim |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dong Hyun Kim |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5052311375 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2624-1606 |
| authorships[2].author.display_name | Hee‐Dong Chae |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hee-Dong Chae |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101765018 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4205-2362 |
| authorships[3].author.display_name | Eugene Lee |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Eugene Lee |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5070003209 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6498-9813 |
| authorships[4].author.display_name | Ji Hee Kang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ji Hee Kang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5104276786 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3815-7295 |
| authorships[5].author.display_name | Ji Hyun Lee |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ji Hyun Lee |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100382597 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-0549-5722 |
| authorships[6].author.display_name | Hyo Jin Kim |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Hyo Jin Kim |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5002705954 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-1810-2342 |
| authorships[7].author.display_name | Jiwoon Seo |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Jiwoon Seo |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5076975295 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-1630-1863 |
| authorships[8].author.display_name | Jee Won Chai |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Jee Won Chai |
| authorships[8].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2139/ssrn.5142805 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Expert-Level Bone Metastasis Detection on CT with Deep Learning Models Considering Lesion Visibility: Multi-Center Development and Evaluation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12422 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Radiomics and Machine Learning in Medical Imaging |
| related_works | https://openalex.org/W2392812199, https://openalex.org/W4200176076, https://openalex.org/W598185802, https://openalex.org/W2355516524, https://openalex.org/W2361471170, https://openalex.org/W2025616642, https://openalex.org/W1954972543, https://openalex.org/W2954738200, https://openalex.org/W4220843223, https://openalex.org/W4226107239 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2139/ssrn.5142805 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172589 |
| best_oa_location.source.issn | 1556-5068 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1556-5068 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | SSRN Electronic Journal |
| best_oa_location.source.host_organization | https://openalex.org/I1318003438 |
| best_oa_location.source.host_organization_name | RELX Group (Netherlands) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.2139/ssrn.5142805 |
| primary_location.id | doi:10.2139/ssrn.5142805 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172589 |
| primary_location.source.issn | 1556-5068 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1556-5068 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | SSRN Electronic Journal |
| primary_location.source.host_organization | https://openalex.org/I1318003438 |
| primary_location.source.host_organization_name | RELX Group (Netherlands) |
| primary_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.2139/ssrn.5142805 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W6777358001, https://openalex.org/W2766648820, https://openalex.org/W1599234901, https://openalex.org/W2295378444, https://openalex.org/W2012734901, https://openalex.org/W2005243010, https://openalex.org/W4226195366, https://openalex.org/W4391091793, https://openalex.org/W4384131424, https://openalex.org/W4319602142, https://openalex.org/W4361294126, https://openalex.org/W4403654109, https://openalex.org/W2885065241, https://openalex.org/W4389618885, https://openalex.org/W2082162228, https://openalex.org/W2902537990, https://openalex.org/W4392161826, https://openalex.org/W3014974815, https://openalex.org/W104184427, https://openalex.org/W6604820715, https://openalex.org/W3106889297, https://openalex.org/W4230173782, https://openalex.org/W3141739572, https://openalex.org/W4313584274, https://openalex.org/W4289446088, https://openalex.org/W4362663914, https://openalex.org/W3112701542, https://openalex.org/W116751493 |
| referenced_works_count | 28 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/17 |
| sustainable_development_goals[0].score | 0.5299999713897705 |
| sustainable_development_goals[0].display_name | Partnerships for the goals |
| sustainable_development_goals[1].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[1].score | 0.5199999809265137 |
| sustainable_development_goals[1].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.82844859 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |