Explainability of Text Processing and Retrieval Methods: A Survey Article Swipe
Sourav Saha
,
Debapriyo Majumdar
,
Mandar Mitra
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2212.07126
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2212.07126
Deep Learning and Machine Learning based models have become extremely popular in text processing and information retrieval. However, the non-linear structures present inside the networks make these models largely inscrutable. A significant body of research has focused on increasing the transparency of these models. This article provides a broad overview of research on the explainability and interpretability of natural language processing and information retrieval methods. More specifically, we survey approaches that have been applied to explain word embeddings, sequence modeling, attention modules, transformers, BERT, and document ranking. The concluding section suggests some possible directions for future research on this topic.
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2212.07126
- https://arxiv.org/pdf/2212.07126
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4320478230
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4320478230Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2212.07126Digital Object Identifier
- Title
-
Explainability of Text Processing and Retrieval Methods: A SurveyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-14Full publication date if available
- Authors
-
Sourav Saha, Debapriyo Majumdar, Mandar MitraList of authors in order
- Landing page
-
https://arxiv.org/abs/2212.07126Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2212.07126Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2212.07126Direct OA link when available
- Concepts
-
Interpretability, Computer science, Natural language processing, Artificial intelligence, Transformer, Transparency (behavior), Information retrieval, Ranking (information retrieval), Deep learning, Document retrieval, Question answering, Quantum mechanics, Computer security, Voltage, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4320478230 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2212.07126 |
| ids.doi | https://doi.org/10.48550/arxiv.2212.07126 |
| ids.openalex | https://openalex.org/W4320478230 |
| fwci | |
| type | preprint |
| title | Explainability of Text Processing and Retrieval Methods: A Survey |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9973999857902527 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T12026 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9965000152587891 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Explainable Artificial Intelligence (XAI) |
| topics[2].id | https://openalex.org/T13910 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9534000158309937 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3300 |
| topics[2].subfield.display_name | General Social Sciences |
| topics[2].display_name | Computational and Text Analysis Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2781067378 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8899490833282471 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[0].display_name | Interpretability |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7404554486274719 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C204321447 |
| concepts[2].level | 1 |
| concepts[2].score | 0.564737856388092 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[2].display_name | Natural language processing |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5621882081031799 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C66322947 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5607662200927734 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[4].display_name | Transformer |
| concepts[5].id | https://openalex.org/C2780233690 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5599793791770935 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q535347 |
| concepts[5].display_name | Transparency (behavior) |
| concepts[6].id | https://openalex.org/C23123220 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5544113516807556 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[6].display_name | Information retrieval |
| concepts[7].id | https://openalex.org/C189430467 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5118712782859802 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7293293 |
| concepts[7].display_name | Ranking (information retrieval) |
| concepts[8].id | https://openalex.org/C108583219 |
| concepts[8].level | 2 |
| concepts[8].score | 0.44553473591804504 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[8].display_name | Deep learning |
| concepts[9].id | https://openalex.org/C161156560 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44154414534568787 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1638872 |
| concepts[9].display_name | Document retrieval |
| concepts[10].id | https://openalex.org/C44291984 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4343150854110718 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1074173 |
| concepts[10].display_name | Question answering |
| concepts[11].id | https://openalex.org/C62520636 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[11].display_name | Quantum mechanics |
| concepts[12].id | https://openalex.org/C38652104 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[12].display_name | Computer security |
| concepts[13].id | https://openalex.org/C165801399 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[13].display_name | Voltage |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/interpretability |
| keywords[0].score | 0.8899490833282471 |
| keywords[0].display_name | Interpretability |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7404554486274719 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/natural-language-processing |
| keywords[2].score | 0.564737856388092 |
| keywords[2].display_name | Natural language processing |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5621882081031799 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/transformer |
| keywords[4].score | 0.5607662200927734 |
| keywords[4].display_name | Transformer |
| keywords[5].id | https://openalex.org/keywords/transparency |
| keywords[5].score | 0.5599793791770935 |
| keywords[5].display_name | Transparency (behavior) |
| keywords[6].id | https://openalex.org/keywords/information-retrieval |
| keywords[6].score | 0.5544113516807556 |
| keywords[6].display_name | Information retrieval |
| keywords[7].id | https://openalex.org/keywords/ranking |
| keywords[7].score | 0.5118712782859802 |
| keywords[7].display_name | Ranking (information retrieval) |
| keywords[8].id | https://openalex.org/keywords/deep-learning |
| keywords[8].score | 0.44553473591804504 |
| keywords[8].display_name | Deep learning |
| keywords[9].id | https://openalex.org/keywords/document-retrieval |
| keywords[9].score | 0.44154414534568787 |
| keywords[9].display_name | Document retrieval |
| keywords[10].id | https://openalex.org/keywords/question-answering |
| keywords[10].score | 0.4343150854110718 |
| keywords[10].display_name | Question answering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2212.07126 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2212.07126 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2212.07126 |
| locations[1].id | doi:10.48550/arxiv.2212.07126 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2212.07126 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5051854259 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7242-5540 |
| authorships[0].author.display_name | Sourav Saha |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Saha, Sourav |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5110446128 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Debapriyo Majumdar |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Majumdar, Debapriyo |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5052357764 |
| authorships[2].author.orcid | https://orcid.org/0009-0007-8026-3220 |
| authorships[2].author.display_name | Mandar Mitra |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Mitra, Mandar |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2212.07126 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-02-14T00:00:00 |
| display_name | Explainability of Text Processing and Retrieval Methods: A Survey |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9973999857902527 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2113651401, https://openalex.org/W2120435877, https://openalex.org/W2118564381, https://openalex.org/W2188472926, https://openalex.org/W2051752098, https://openalex.org/W2547096221, https://openalex.org/W2203835818, https://openalex.org/W3090266277, https://openalex.org/W1977123279, https://openalex.org/W1573119140 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2212.07126 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2212.07126 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2212.07126 |
| primary_location.id | pmh:oai:arXiv.org:2212.07126 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2212.07126 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2212.07126 |
| publication_date | 2022-12-14 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 30 |
| abstract_inverted_index.a | 47 |
| abstract_inverted_index.in | 11 |
| abstract_inverted_index.of | 33, 41, 50, 57 |
| abstract_inverted_index.on | 37, 52, 97 |
| abstract_inverted_index.to | 74 |
| abstract_inverted_index.we | 67 |
| abstract_inverted_index.The | 87 |
| abstract_inverted_index.and | 2, 14, 55, 61, 84 |
| abstract_inverted_index.for | 94 |
| abstract_inverted_index.has | 35 |
| abstract_inverted_index.the | 18, 23, 39, 53 |
| abstract_inverted_index.Deep | 0 |
| abstract_inverted_index.More | 65 |
| abstract_inverted_index.This | 44 |
| abstract_inverted_index.been | 72 |
| abstract_inverted_index.body | 32 |
| abstract_inverted_index.have | 7, 71 |
| abstract_inverted_index.make | 25 |
| abstract_inverted_index.some | 91 |
| abstract_inverted_index.text | 12 |
| abstract_inverted_index.that | 70 |
| abstract_inverted_index.this | 98 |
| abstract_inverted_index.word | 76 |
| abstract_inverted_index.BERT, | 83 |
| abstract_inverted_index.based | 5 |
| abstract_inverted_index.broad | 48 |
| abstract_inverted_index.these | 26, 42 |
| abstract_inverted_index.become | 8 |
| abstract_inverted_index.future | 95 |
| abstract_inverted_index.inside | 22 |
| abstract_inverted_index.models | 6, 27 |
| abstract_inverted_index.survey | 68 |
| abstract_inverted_index.topic. | 99 |
| abstract_inverted_index.Machine | 3 |
| abstract_inverted_index.applied | 73 |
| abstract_inverted_index.article | 45 |
| abstract_inverted_index.explain | 75 |
| abstract_inverted_index.focused | 36 |
| abstract_inverted_index.largely | 28 |
| abstract_inverted_index.models. | 43 |
| abstract_inverted_index.natural | 58 |
| abstract_inverted_index.popular | 10 |
| abstract_inverted_index.present | 21 |
| abstract_inverted_index.section | 89 |
| abstract_inverted_index.However, | 17 |
| abstract_inverted_index.Learning | 1, 4 |
| abstract_inverted_index.document | 85 |
| abstract_inverted_index.language | 59 |
| abstract_inverted_index.methods. | 64 |
| abstract_inverted_index.modules, | 81 |
| abstract_inverted_index.networks | 24 |
| abstract_inverted_index.overview | 49 |
| abstract_inverted_index.possible | 92 |
| abstract_inverted_index.provides | 46 |
| abstract_inverted_index.ranking. | 86 |
| abstract_inverted_index.research | 34, 51, 96 |
| abstract_inverted_index.sequence | 78 |
| abstract_inverted_index.suggests | 90 |
| abstract_inverted_index.attention | 80 |
| abstract_inverted_index.extremely | 9 |
| abstract_inverted_index.modeling, | 79 |
| abstract_inverted_index.retrieval | 63 |
| abstract_inverted_index.approaches | 69 |
| abstract_inverted_index.concluding | 88 |
| abstract_inverted_index.directions | 93 |
| abstract_inverted_index.increasing | 38 |
| abstract_inverted_index.non-linear | 19 |
| abstract_inverted_index.processing | 13, 60 |
| abstract_inverted_index.retrieval. | 16 |
| abstract_inverted_index.structures | 20 |
| abstract_inverted_index.embeddings, | 77 |
| abstract_inverted_index.information | 15, 62 |
| abstract_inverted_index.significant | 31 |
| abstract_inverted_index.inscrutable. | 29 |
| abstract_inverted_index.transparency | 40 |
| abstract_inverted_index.specifically, | 66 |
| abstract_inverted_index.transformers, | 82 |
| abstract_inverted_index.explainability | 54 |
| abstract_inverted_index.interpretability | 56 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.8500000238418579 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |