Explainable AI for Large-Scale Predictive Systems: Techniques, Applications, and Future Directions Article Swipe
This article provides a comprehensive examination of Explainable Artificial Intelligence (XAI) techniques and their applications in large-scale predictive systems. The article explores both model-agnostic and model-specific approaches, examining their effectiveness in various domains including healthcare, finance, and transportation. The article explores fundamental XAI concepts, historical development, and current taxonomies while addressing crucial regulatory and ethical considerations. The article examines feature importance methods, partial dependence plots, SHAP values, LIME, and counterfactual explanations as key model-agnostic techniques. It further delves into model-specific approaches including decision tree interpretability, neural network visualization, attention mechanisms, rule extraction methods, and architecture-specific approaches. The article extensively covers domain applications, highlighting how XAI enhances transparency and trust in critical sectors. The article also addresses significant challenges including scalability issues, interpretation complexity, computational overhead, accuracy-explainability trade-offs, and human factors in XAI implementation. This article contributes to the understanding of XAI's current state and future directions in large-scale predictive systems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.32628/cseit251112299
- OA Status
- diamond
- References
- 5
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407837512
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407837512Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.32628/cseit251112299Digital Object Identifier
- Title
-
Explainable AI for Large-Scale Predictive Systems: Techniques, Applications, and Future DirectionsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-18Full publication date if available
- Authors
-
P. KrishnamurthyList of authors in order
- Landing page
-
https://doi.org/10.32628/cseit251112299Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.32628/cseit251112299Direct OA link when available
- Concepts
-
Scale (ratio), Computer science, Data science, Artificial intelligence, Geography, CartographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
5Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407837512 |
|---|---|
| doi | https://doi.org/10.32628/cseit251112299 |
| ids.doi | https://doi.org/10.32628/cseit251112299 |
| ids.openalex | https://openalex.org/W4407837512 |
| fwci | 0.0 |
| type | article |
| title | Explainable AI for Large-Scale Predictive Systems: Techniques, Applications, and Future Directions |
| biblio.issue | 1 |
| biblio.volume | 11 |
| biblio.last_page | 2897 |
| biblio.first_page | 2889 |
| topics[0].id | https://openalex.org/T12026 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.7774999737739563 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Explainable Artificial Intelligence (XAI) |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778755073 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6037232875823975 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[0].display_name | Scale (ratio) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5158016681671143 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2522767166 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3821684718132019 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[2].display_name | Data science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.37050026655197144 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C205649164 |
| concepts[4].level | 0 |
| concepts[4].score | 0.1368846297264099 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[4].display_name | Geography |
| concepts[5].id | https://openalex.org/C58640448 |
| concepts[5].level | 1 |
| concepts[5].score | 0.12887418270111084 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[5].display_name | Cartography |
| keywords[0].id | https://openalex.org/keywords/scale |
| keywords[0].score | 0.6037232875823975 |
| keywords[0].display_name | Scale (ratio) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5158016681671143 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/data-science |
| keywords[2].score | 0.3821684718132019 |
| keywords[2].display_name | Data science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.37050026655197144 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/geography |
| keywords[4].score | 0.1368846297264099 |
| keywords[4].display_name | Geography |
| keywords[5].id | https://openalex.org/keywords/cartography |
| keywords[5].score | 0.12887418270111084 |
| keywords[5].display_name | Cartography |
| language | en |
| locations[0].id | doi:10.32628/cseit251112299 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210200847 |
| locations[0].source.issn | 2456-3307 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2456-3307 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Scientific Research in Computer Science Engineering and Information Technology |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Scientific Research in Computer Science, Engineering and Information Technology |
| locations[0].landing_page_url | https://doi.org/10.32628/cseit251112299 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5054769060 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8264-7972 |
| authorships[0].author.display_name | P. Krishnamurthy |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | None Priyadharshini Krishnamurthy |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.32628/cseit251112299 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Explainable AI for Large-Scale Predictive Systems: Techniques, Applications, and Future Directions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12026 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.7774999737739563 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Explainable Artificial Intelligence (XAI) |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.32628/cseit251112299 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210200847 |
| best_oa_location.source.issn | 2456-3307 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2456-3307 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Scientific Research in Computer Science Engineering and Information Technology |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Scientific Research in Computer Science, Engineering and Information Technology |
| best_oa_location.landing_page_url | https://doi.org/10.32628/cseit251112299 |
| primary_location.id | doi:10.32628/cseit251112299 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210200847 |
| primary_location.source.issn | 2456-3307 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2456-3307 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Scientific Research in Computer Science Engineering and Information Technology |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Scientific Research in Computer Science, Engineering and Information Technology |
| primary_location.landing_page_url | https://doi.org/10.32628/cseit251112299 |
| publication_date | 2025-02-18 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4410035562, https://openalex.org/W4399449888, https://openalex.org/W4392784006, https://openalex.org/W4404650485, https://openalex.org/W4403501023 |
| referenced_works_count | 5 |
| abstract_inverted_index.a | 3 |
| abstract_inverted_index.It | 75 |
| abstract_inverted_index.as | 71 |
| abstract_inverted_index.in | 15, 30, 109, 130, 146 |
| abstract_inverted_index.of | 6, 139 |
| abstract_inverted_index.to | 136 |
| abstract_inverted_index.The | 19, 38, 56, 96, 112 |
| abstract_inverted_index.XAI | 42, 104, 131 |
| abstract_inverted_index.and | 12, 24, 36, 46, 53, 68, 93, 107, 127, 143 |
| abstract_inverted_index.how | 103 |
| abstract_inverted_index.key | 72 |
| abstract_inverted_index.the | 137 |
| abstract_inverted_index.SHAP | 65 |
| abstract_inverted_index.This | 0, 133 |
| abstract_inverted_index.also | 114 |
| abstract_inverted_index.both | 22 |
| abstract_inverted_index.into | 78 |
| abstract_inverted_index.rule | 90 |
| abstract_inverted_index.tree | 83 |
| abstract_inverted_index.(XAI) | 10 |
| abstract_inverted_index.LIME, | 67 |
| abstract_inverted_index.XAI's | 140 |
| abstract_inverted_index.human | 128 |
| abstract_inverted_index.state | 142 |
| abstract_inverted_index.their | 13, 28 |
| abstract_inverted_index.trust | 108 |
| abstract_inverted_index.while | 49 |
| abstract_inverted_index.covers | 99 |
| abstract_inverted_index.delves | 77 |
| abstract_inverted_index.domain | 100 |
| abstract_inverted_index.future | 144 |
| abstract_inverted_index.neural | 85 |
| abstract_inverted_index.plots, | 64 |
| abstract_inverted_index.article | 1, 20, 39, 57, 97, 113, 134 |
| abstract_inverted_index.crucial | 51 |
| abstract_inverted_index.current | 47, 141 |
| abstract_inverted_index.domains | 32 |
| abstract_inverted_index.ethical | 54 |
| abstract_inverted_index.factors | 129 |
| abstract_inverted_index.feature | 59 |
| abstract_inverted_index.further | 76 |
| abstract_inverted_index.issues, | 120 |
| abstract_inverted_index.network | 86 |
| abstract_inverted_index.partial | 62 |
| abstract_inverted_index.values, | 66 |
| abstract_inverted_index.various | 31 |
| abstract_inverted_index.critical | 110 |
| abstract_inverted_index.decision | 82 |
| abstract_inverted_index.enhances | 105 |
| abstract_inverted_index.examines | 58 |
| abstract_inverted_index.explores | 21, 40 |
| abstract_inverted_index.finance, | 35 |
| abstract_inverted_index.methods, | 61, 92 |
| abstract_inverted_index.provides | 2 |
| abstract_inverted_index.sectors. | 111 |
| abstract_inverted_index.systems. | 18, 149 |
| abstract_inverted_index.addresses | 115 |
| abstract_inverted_index.attention | 88 |
| abstract_inverted_index.concepts, | 43 |
| abstract_inverted_index.examining | 27 |
| abstract_inverted_index.including | 33, 81, 118 |
| abstract_inverted_index.overhead, | 124 |
| abstract_inverted_index.Artificial | 8 |
| abstract_inverted_index.addressing | 50 |
| abstract_inverted_index.approaches | 80 |
| abstract_inverted_index.challenges | 117 |
| abstract_inverted_index.dependence | 63 |
| abstract_inverted_index.directions | 145 |
| abstract_inverted_index.extraction | 91 |
| abstract_inverted_index.historical | 44 |
| abstract_inverted_index.importance | 60 |
| abstract_inverted_index.predictive | 17, 148 |
| abstract_inverted_index.regulatory | 52 |
| abstract_inverted_index.taxonomies | 48 |
| abstract_inverted_index.techniques | 11 |
| abstract_inverted_index.Explainable | 7 |
| abstract_inverted_index.approaches, | 26 |
| abstract_inverted_index.approaches. | 95 |
| abstract_inverted_index.complexity, | 122 |
| abstract_inverted_index.contributes | 135 |
| abstract_inverted_index.examination | 5 |
| abstract_inverted_index.extensively | 98 |
| abstract_inverted_index.fundamental | 41 |
| abstract_inverted_index.healthcare, | 34 |
| abstract_inverted_index.large-scale | 16, 147 |
| abstract_inverted_index.mechanisms, | 89 |
| abstract_inverted_index.scalability | 119 |
| abstract_inverted_index.significant | 116 |
| abstract_inverted_index.techniques. | 74 |
| abstract_inverted_index.trade-offs, | 126 |
| abstract_inverted_index.Intelligence | 9 |
| abstract_inverted_index.applications | 14 |
| abstract_inverted_index.development, | 45 |
| abstract_inverted_index.explanations | 70 |
| abstract_inverted_index.highlighting | 102 |
| abstract_inverted_index.transparency | 106 |
| abstract_inverted_index.applications, | 101 |
| abstract_inverted_index.comprehensive | 4 |
| abstract_inverted_index.computational | 123 |
| abstract_inverted_index.effectiveness | 29 |
| abstract_inverted_index.understanding | 138 |
| abstract_inverted_index.counterfactual | 69 |
| abstract_inverted_index.interpretation | 121 |
| abstract_inverted_index.model-agnostic | 23, 73 |
| abstract_inverted_index.model-specific | 25, 79 |
| abstract_inverted_index.visualization, | 87 |
| abstract_inverted_index.considerations. | 55 |
| abstract_inverted_index.implementation. | 132 |
| abstract_inverted_index.transportation. | 37 |
| abstract_inverted_index.interpretability, | 84 |
| abstract_inverted_index.architecture-specific | 94 |
| abstract_inverted_index.accuracy-explainability | 125 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5054769060 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile.value | 0.01942651 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |