Explainable few-shot learning with dynamic prototypes for distributed fiber-optic intrusion detection Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1364/oe.580802
Reliable intrusion detection is critical for modern infrastructure security, yet it faces two fundamental challenges: scarcity of labeled samples and lack of model interpretability. Distributed optical fiber vibration sensing (DVS) systems are promising for perimeter security but perform poorly when only a few intrusion samples are available. Most deep models also lack transparency and trustworthiness. To address these issues, we propose an explainable dual-branch feature fusion dynamic class center prototypical network (DBFF-DC-ProtoNet). The framework employs a lightweight dual-branch 1-D ResNet to extract complementary temporal and time–frequency representations from raw signals and discrete wavelet transform (DWT) features, which are fused to form more discriminative class prototypes. A dynamic class center update strategy with a novel loss function is further introduced to enhance intra-class compactness and inter-class separability in few-shot conditions. In addition, an explainability module integrates prototype-based class activation mapping (Proto-CAM) and case-based reasoning, offering both fine-grained attribution of key signal segments and intuitive retrieval of similar historical cases. Extensive experiments on a self-collected dataset and a public benchmark confirm the effectiveness of our approach, achieving 97.22% and 98.33% accuracy under the 5-shot setting. These results demonstrate that DBFF-DC-ProtoNet effectively bridges few-shot learning with interpretability, providing a practical and trustworthy solution for DVS-based intrusion detection.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1364/oe.580802
- OA Status
- gold
- References
- 29
- OpenAlex ID
- https://openalex.org/W4416304396
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416304396Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1364/oe.580802Digital Object Identifier
- Title
-
Explainable few-shot learning with dynamic prototypes for distributed fiber-optic intrusion detectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-18Full publication date if available
- Authors
-
Xing Hu, Huiliang Shang, Haima Yang, Dawei ZhangList of authors in order
- Landing page
-
https://doi.org/10.1364/oe.580802Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1364/oe.580802Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
29Number of works referenced by this work
Full payload
| id | https://openalex.org/W4416304396 |
|---|---|
| doi | https://doi.org/10.1364/oe.580802 |
| ids.doi | https://doi.org/10.1364/oe.580802 |
| ids.openalex | https://openalex.org/W4416304396 |
| fwci | |
| type | article |
| title | Explainable few-shot learning with dynamic prototypes for distributed fiber-optic intrusion detection |
| biblio.issue | 24 |
| biblio.volume | 33 |
| biblio.last_page | 51277 |
| biblio.first_page | 51277 |
| is_xpac | False |
| apc_list.value | 2270 |
| apc_list.currency | USD |
| apc_list.value_usd | 2270 |
| apc_paid.value | 2270 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2270 |
| language | en |
| locations[0].id | doi:10.1364/oe.580802 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S178776955 |
| locations[0].source.issn | 1094-4087 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1094-4087 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Optics Express |
| locations[0].source.host_organization | https://openalex.org/P4310315679 |
| locations[0].source.host_organization_name | Optica Publishing Group |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315679 |
| locations[0].source.host_organization_lineage_names | Optica Publishing Group |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Optics Express |
| locations[0].landing_page_url | https://doi.org/10.1364/oe.580802 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5113374967 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Xing Hu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xing Hu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5110301590 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9553-1589 |
| authorships[1].author.display_name | Huiliang Shang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Huiliang Shang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5042290525 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Haima Yang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Haima Yang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100379743 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0841-7826 |
| authorships[3].author.display_name | Dawei Zhang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Dawei Zhang |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1364/oe.580802 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-18T00:00:00 |
| display_name | Explainable few-shot learning with dynamic prototypes for distributed fiber-optic intrusion detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T10:46:09.804341 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1364/oe.580802 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S178776955 |
| best_oa_location.source.issn | 1094-4087 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1094-4087 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Optics Express |
| best_oa_location.source.host_organization | https://openalex.org/P4310315679 |
| best_oa_location.source.host_organization_name | Optica Publishing Group |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315679 |
| best_oa_location.source.host_organization_lineage_names | Optica Publishing Group |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Optics Express |
| best_oa_location.landing_page_url | https://doi.org/10.1364/oe.580802 |
| primary_location.id | doi:10.1364/oe.580802 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S178776955 |
| primary_location.source.issn | 1094-4087 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1094-4087 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Optics Express |
| primary_location.source.host_organization | https://openalex.org/P4310315679 |
| primary_location.source.host_organization_name | Optica Publishing Group |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315679 |
| primary_location.source.host_organization_lineage_names | Optica Publishing Group |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Optics Express |
| primary_location.landing_page_url | https://doi.org/10.1364/oe.580802 |
| publication_date | 2025-11-18 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4399929226, https://openalex.org/W3107224008, https://openalex.org/W3001715844, https://openalex.org/W4377235375, https://openalex.org/W2990153558, https://openalex.org/W3127308631, https://openalex.org/W2909696721, https://openalex.org/W2757227051, https://openalex.org/W2754863095, https://openalex.org/W3016203149, https://openalex.org/W4205590048, https://openalex.org/W4406203758, https://openalex.org/W4406494158, https://openalex.org/W4407158490, https://openalex.org/W4405757264, https://openalex.org/W4406642495, https://openalex.org/W3163842339, https://openalex.org/W4407053502, https://openalex.org/W4403283396, https://openalex.org/W4388037272, https://openalex.org/W4404214340, https://openalex.org/W2419542619, https://openalex.org/W3158065011, https://openalex.org/W2884561390, https://openalex.org/W4318756714, https://openalex.org/W2953212672, https://openalex.org/W2777746061, https://openalex.org/W4404770618, https://openalex.org/W4389060294 |
| referenced_works_count | 29 |
| abstract_inverted_index.A | 105 |
| abstract_inverted_index.a | 41, 75, 112, 161, 165, 195 |
| abstract_inverted_index.In | 129 |
| abstract_inverted_index.To | 55 |
| abstract_inverted_index.an | 61, 131 |
| abstract_inverted_index.in | 126 |
| abstract_inverted_index.is | 3, 116 |
| abstract_inverted_index.it | 10 |
| abstract_inverted_index.of | 16, 21, 147, 154, 171 |
| abstract_inverted_index.on | 160 |
| abstract_inverted_index.to | 80, 99, 119 |
| abstract_inverted_index.we | 59 |
| abstract_inverted_index.1-D | 78 |
| abstract_inverted_index.The | 72 |
| abstract_inverted_index.and | 19, 53, 84, 90, 123, 140, 151, 164, 176, 197 |
| abstract_inverted_index.are | 31, 45, 97 |
| abstract_inverted_index.but | 36 |
| abstract_inverted_index.few | 42 |
| abstract_inverted_index.for | 5, 33, 200 |
| abstract_inverted_index.key | 148 |
| abstract_inverted_index.our | 172 |
| abstract_inverted_index.raw | 88 |
| abstract_inverted_index.the | 169, 180 |
| abstract_inverted_index.two | 12 |
| abstract_inverted_index.yet | 9 |
| abstract_inverted_index.Most | 47 |
| abstract_inverted_index.also | 50 |
| abstract_inverted_index.both | 144 |
| abstract_inverted_index.deep | 48 |
| abstract_inverted_index.form | 100 |
| abstract_inverted_index.from | 87 |
| abstract_inverted_index.lack | 20, 51 |
| abstract_inverted_index.loss | 114 |
| abstract_inverted_index.more | 101 |
| abstract_inverted_index.only | 40 |
| abstract_inverted_index.that | 186 |
| abstract_inverted_index.when | 39 |
| abstract_inverted_index.with | 111, 192 |
| abstract_inverted_index.(DVS) | 29 |
| abstract_inverted_index.(DWT) | 94 |
| abstract_inverted_index.These | 183 |
| abstract_inverted_index.class | 67, 103, 107, 136 |
| abstract_inverted_index.faces | 11 |
| abstract_inverted_index.fiber | 26 |
| abstract_inverted_index.fused | 98 |
| abstract_inverted_index.model | 22 |
| abstract_inverted_index.novel | 113 |
| abstract_inverted_index.these | 57 |
| abstract_inverted_index.under | 179 |
| abstract_inverted_index.which | 96 |
| abstract_inverted_index.5-shot | 181 |
| abstract_inverted_index.97.22% | 175 |
| abstract_inverted_index.98.33% | 177 |
| abstract_inverted_index.ResNet | 79 |
| abstract_inverted_index.cases. | 157 |
| abstract_inverted_index.center | 68, 108 |
| abstract_inverted_index.fusion | 65 |
| abstract_inverted_index.models | 49 |
| abstract_inverted_index.modern | 6 |
| abstract_inverted_index.module | 133 |
| abstract_inverted_index.poorly | 38 |
| abstract_inverted_index.public | 166 |
| abstract_inverted_index.signal | 149 |
| abstract_inverted_index.update | 109 |
| abstract_inverted_index.address | 56 |
| abstract_inverted_index.bridges | 189 |
| abstract_inverted_index.confirm | 168 |
| abstract_inverted_index.dataset | 163 |
| abstract_inverted_index.dynamic | 66, 106 |
| abstract_inverted_index.employs | 74 |
| abstract_inverted_index.enhance | 120 |
| abstract_inverted_index.extract | 81 |
| abstract_inverted_index.feature | 64 |
| abstract_inverted_index.further | 117 |
| abstract_inverted_index.issues, | 58 |
| abstract_inverted_index.labeled | 17 |
| abstract_inverted_index.mapping | 138 |
| abstract_inverted_index.network | 70 |
| abstract_inverted_index.optical | 25 |
| abstract_inverted_index.perform | 37 |
| abstract_inverted_index.propose | 60 |
| abstract_inverted_index.results | 184 |
| abstract_inverted_index.samples | 18, 44 |
| abstract_inverted_index.sensing | 28 |
| abstract_inverted_index.signals | 89 |
| abstract_inverted_index.similar | 155 |
| abstract_inverted_index.systems | 30 |
| abstract_inverted_index.wavelet | 92 |
| abstract_inverted_index.Reliable | 0 |
| abstract_inverted_index.accuracy | 178 |
| abstract_inverted_index.critical | 4 |
| abstract_inverted_index.discrete | 91 |
| abstract_inverted_index.few-shot | 127, 190 |
| abstract_inverted_index.function | 115 |
| abstract_inverted_index.learning | 191 |
| abstract_inverted_index.offering | 143 |
| abstract_inverted_index.scarcity | 15 |
| abstract_inverted_index.security | 35 |
| abstract_inverted_index.segments | 150 |
| abstract_inverted_index.setting. | 182 |
| abstract_inverted_index.solution | 199 |
| abstract_inverted_index.strategy | 110 |
| abstract_inverted_index.temporal | 83 |
| abstract_inverted_index.DVS-based | 201 |
| abstract_inverted_index.Extensive | 158 |
| abstract_inverted_index.achieving | 174 |
| abstract_inverted_index.addition, | 130 |
| abstract_inverted_index.approach, | 173 |
| abstract_inverted_index.benchmark | 167 |
| abstract_inverted_index.detection | 2 |
| abstract_inverted_index.features, | 95 |
| abstract_inverted_index.framework | 73 |
| abstract_inverted_index.intrusion | 1, 43, 202 |
| abstract_inverted_index.intuitive | 152 |
| abstract_inverted_index.perimeter | 34 |
| abstract_inverted_index.practical | 196 |
| abstract_inverted_index.promising | 32 |
| abstract_inverted_index.providing | 194 |
| abstract_inverted_index.retrieval | 153 |
| abstract_inverted_index.security, | 8 |
| abstract_inverted_index.transform | 93 |
| abstract_inverted_index.vibration | 27 |
| abstract_inverted_index.activation | 137 |
| abstract_inverted_index.available. | 46 |
| abstract_inverted_index.case-based | 141 |
| abstract_inverted_index.detection. | 203 |
| abstract_inverted_index.historical | 156 |
| abstract_inverted_index.integrates | 134 |
| abstract_inverted_index.introduced | 118 |
| abstract_inverted_index.reasoning, | 142 |
| abstract_inverted_index.(Proto-CAM) | 139 |
| abstract_inverted_index.Distributed | 24 |
| abstract_inverted_index.attribution | 146 |
| abstract_inverted_index.challenges: | 14 |
| abstract_inverted_index.compactness | 122 |
| abstract_inverted_index.conditions. | 128 |
| abstract_inverted_index.demonstrate | 185 |
| abstract_inverted_index.dual-branch | 63, 77 |
| abstract_inverted_index.effectively | 188 |
| abstract_inverted_index.experiments | 159 |
| abstract_inverted_index.explainable | 62 |
| abstract_inverted_index.fundamental | 13 |
| abstract_inverted_index.inter-class | 124 |
| abstract_inverted_index.intra-class | 121 |
| abstract_inverted_index.lightweight | 76 |
| abstract_inverted_index.prototypes. | 104 |
| abstract_inverted_index.trustworthy | 198 |
| abstract_inverted_index.fine-grained | 145 |
| abstract_inverted_index.prototypical | 69 |
| abstract_inverted_index.separability | 125 |
| abstract_inverted_index.transparency | 52 |
| abstract_inverted_index.complementary | 82 |
| abstract_inverted_index.effectiveness | 170 |
| abstract_inverted_index.discriminative | 102 |
| abstract_inverted_index.explainability | 132 |
| abstract_inverted_index.infrastructure | 7 |
| abstract_inverted_index.self-collected | 162 |
| abstract_inverted_index.prototype-based | 135 |
| abstract_inverted_index.representations | 86 |
| abstract_inverted_index.DBFF-DC-ProtoNet | 187 |
| abstract_inverted_index.time–frequency | 85 |
| abstract_inverted_index.trustworthiness. | 54 |
| abstract_inverted_index.interpretability, | 193 |
| abstract_inverted_index.interpretability. | 23 |
| abstract_inverted_index.(DBFF-DC-ProtoNet). | 71 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |