Explainable Hybrid Deep Learning Models for Physically Consistent Electricity Generation Forecasting Article Swipe
Md. Asifuzzaman Jishan
,
Md Ashikuzzaman
,
Md Ataullah Khan Rifat
,
Abul Kalam Al Azad
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5655456
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5655456
Related Topics
Concepts
No concepts available.
Metadata
- Type
- article
- Landing Page
- https://doi.org/10.2139/ssrn.5655456
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415531205
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415531205Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2139/ssrn.5655456Digital Object Identifier
- Title
-
Explainable Hybrid Deep Learning Models for Physically Consistent Electricity Generation ForecastingWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Md. Asifuzzaman Jishan, Md Ashikuzzaman, Md Ataullah Khan Rifat, Abul Kalam Al AzadList of authors in order
- Landing page
-
https://doi.org/10.2139/ssrn.5655456Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2139/ssrn.5655456Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415531205 |
|---|---|
| doi | https://doi.org/10.2139/ssrn.5655456 |
| ids.doi | https://doi.org/10.2139/ssrn.5655456 |
| ids.openalex | https://openalex.org/W4415531205 |
| fwci | 0.0 |
| type | article |
| title | Explainable Hybrid Deep Learning Models for Physically Consistent Electricity Generation Forecasting |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11052 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9909999966621399 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Energy Load and Power Forecasting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | doi:10.2139/ssrn.5655456 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172589 |
| locations[0].source.issn | 1556-5068 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1556-5068 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | SSRN Electronic Journal |
| locations[0].source.host_organization | https://openalex.org/I1318003438 |
| locations[0].source.host_organization_name | RELX Group (Netherlands) |
| locations[0].source.host_organization_lineage | https://openalex.org/I1318003438 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.2139/ssrn.5655456 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5007927719 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9540-5614 |
| authorships[0].author.display_name | Md. Asifuzzaman Jishan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Md Asifuzzaman Jishan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5046026148 |
| authorships[1].author.orcid | https://orcid.org/0009-0000-2390-1352 |
| authorships[1].author.display_name | Md Ashikuzzaman |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Md Ashikuzzaman |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5114093122 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Md Ataullah Khan Rifat |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Md Ataullah Khan Rifat |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5102744886 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3399-3195 |
| authorships[3].author.display_name | Abul Kalam Al Azad |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Abul Kalam al Azad |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2139/ssrn.5655456 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-25T00:00:00 |
| display_name | Explainable Hybrid Deep Learning Models for Physically Consistent Electricity Generation Forecasting |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11052 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9909999966621399 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Energy Load and Power Forecasting |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2139/ssrn.5655456 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172589 |
| best_oa_location.source.issn | 1556-5068 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1556-5068 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | SSRN Electronic Journal |
| best_oa_location.source.host_organization | https://openalex.org/I1318003438 |
| best_oa_location.source.host_organization_name | RELX Group (Netherlands) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.2139/ssrn.5655456 |
| primary_location.id | doi:10.2139/ssrn.5655456 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172589 |
| primary_location.source.issn | 1556-5068 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1556-5068 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | SSRN Electronic Journal |
| primary_location.source.host_organization | https://openalex.org/I1318003438 |
| primary_location.source.host_organization_name | RELX Group (Netherlands) |
| primary_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.2139/ssrn.5655456 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.58025599 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |