Explainable LiDAR 3D Point Cloud Segmentation and Clustering for Detecting Airplane-Generated Wind Turbulence Article Swipe
Zhan Qu
,
Shuzhou Yuan
,
Michael Färber
,
Marius Brennfleck
,
Niklas Wartha
,
Anton Stephan
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1145/3690624.3709436
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1145/3690624.3709436
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3690624.3709436
- OA Status
- gold
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409150049
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409150049Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3690624.3709436Digital Object Identifier
- Title
-
Explainable LiDAR 3D Point Cloud Segmentation and Clustering for Detecting Airplane-Generated Wind TurbulenceWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-04Full publication date if available
- Authors
-
Zhan Qu, Shuzhou Yuan, Michael Färber, Marius Brennfleck, Niklas Wartha, Anton StephanList of authors in order
- Landing page
-
https://doi.org/10.1145/3690624.3709436Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1145/3690624.3709436Direct OA link when available
- Concepts
-
Airplane, Lidar, Point cloud, Cluster analysis, Computer science, Turbulence, Segmentation, Cloud computing, Remote sensing, Meteorology, Geology, Aerospace engineering, Artificial intelligence, Geography, Engineering, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409150049 |
|---|---|
| doi | https://doi.org/10.1145/3690624.3709436 |
| ids.doi | https://doi.org/10.1145/3690624.3709436 |
| ids.openalex | https://openalex.org/W4409150049 |
| fwci | 0.0 |
| type | article |
| title | Explainable LiDAR 3D Point Cloud Segmentation and Clustering for Detecting Airplane-Generated Wind Turbulence |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 2513 |
| biblio.first_page | 2504 |
| topics[0].id | https://openalex.org/T11164 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9957000017166138 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Remote Sensing and LiDAR Applications |
| topics[1].id | https://openalex.org/T10719 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9779999852180481 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2206 |
| topics[1].subfield.display_name | Computational Mechanics |
| topics[1].display_name | 3D Shape Modeling and Analysis |
| topics[2].id | https://openalex.org/T12125 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9764000177383423 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Aerospace and Aviation Technology |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2781407631 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8118469715118408 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q197 |
| concepts[0].display_name | Airplane |
| concepts[1].id | https://openalex.org/C51399673 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7581563591957092 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q504027 |
| concepts[1].display_name | Lidar |
| concepts[2].id | https://openalex.org/C131979681 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6699580550193787 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1899648 |
| concepts[2].display_name | Point cloud |
| concepts[3].id | https://openalex.org/C73555534 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6225128769874573 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[3].display_name | Cluster analysis |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5546150803565979 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C196558001 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5053141713142395 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q190132 |
| concepts[5].display_name | Turbulence |
| concepts[6].id | https://openalex.org/C89600930 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4866224229335785 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[6].display_name | Segmentation |
| concepts[7].id | https://openalex.org/C79974875 |
| concepts[7].level | 2 |
| concepts[7].score | 0.47295328974723816 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q483639 |
| concepts[7].display_name | Cloud computing |
| concepts[8].id | https://openalex.org/C62649853 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4323859214782715 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[8].display_name | Remote sensing |
| concepts[9].id | https://openalex.org/C153294291 |
| concepts[9].level | 1 |
| concepts[9].score | 0.34786456823349 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[9].display_name | Meteorology |
| concepts[10].id | https://openalex.org/C127313418 |
| concepts[10].level | 0 |
| concepts[10].score | 0.2781168222427368 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[10].display_name | Geology |
| concepts[11].id | https://openalex.org/C146978453 |
| concepts[11].level | 1 |
| concepts[11].score | 0.25978583097457886 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[11].display_name | Aerospace engineering |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.22700077295303345 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C205649164 |
| concepts[13].level | 0 |
| concepts[13].score | 0.17464065551757812 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[13].display_name | Geography |
| concepts[14].id | https://openalex.org/C127413603 |
| concepts[14].level | 0 |
| concepts[14].score | 0.11763551831245422 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[14].display_name | Engineering |
| concepts[15].id | https://openalex.org/C111919701 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[15].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/airplane |
| keywords[0].score | 0.8118469715118408 |
| keywords[0].display_name | Airplane |
| keywords[1].id | https://openalex.org/keywords/lidar |
| keywords[1].score | 0.7581563591957092 |
| keywords[1].display_name | Lidar |
| keywords[2].id | https://openalex.org/keywords/point-cloud |
| keywords[2].score | 0.6699580550193787 |
| keywords[2].display_name | Point cloud |
| keywords[3].id | https://openalex.org/keywords/cluster-analysis |
| keywords[3].score | 0.6225128769874573 |
| keywords[3].display_name | Cluster analysis |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5546150803565979 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/turbulence |
| keywords[5].score | 0.5053141713142395 |
| keywords[5].display_name | Turbulence |
| keywords[6].id | https://openalex.org/keywords/segmentation |
| keywords[6].score | 0.4866224229335785 |
| keywords[6].display_name | Segmentation |
| keywords[7].id | https://openalex.org/keywords/cloud-computing |
| keywords[7].score | 0.47295328974723816 |
| keywords[7].display_name | Cloud computing |
| keywords[8].id | https://openalex.org/keywords/remote-sensing |
| keywords[8].score | 0.4323859214782715 |
| keywords[8].display_name | Remote sensing |
| keywords[9].id | https://openalex.org/keywords/meteorology |
| keywords[9].score | 0.34786456823349 |
| keywords[9].display_name | Meteorology |
| keywords[10].id | https://openalex.org/keywords/geology |
| keywords[10].score | 0.2781168222427368 |
| keywords[10].display_name | Geology |
| keywords[11].id | https://openalex.org/keywords/aerospace-engineering |
| keywords[11].score | 0.25978583097457886 |
| keywords[11].display_name | Aerospace engineering |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.22700077295303345 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/geography |
| keywords[13].score | 0.17464065551757812 |
| keywords[13].display_name | Geography |
| keywords[14].id | https://openalex.org/keywords/engineering |
| keywords[14].score | 0.11763551831245422 |
| keywords[14].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1145/3690624.3709436 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.1 |
| locations[0].landing_page_url | https://doi.org/10.1145/3690624.3709436 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5112122024 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Zhan Qu |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I102335020, https://openalex.org/I78650965 |
| authorships[0].affiliations[0].raw_affiliation_string | Karlsruhe Institute of Technology, Karlsruhe, Germany, ScaDS.AI, Dresden, Germany, & TU Dresden, Dresden, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I102335020 |
| authorships[0].institutions[0].ror | https://ror.org/04t3en479 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I102335020, https://openalex.org/I1305996414 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Karlsruhe Institute of Technology |
| authorships[0].institutions[1].id | https://openalex.org/I78650965 |
| authorships[0].institutions[1].ror | https://ror.org/042aqky30 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I78650965 |
| authorships[0].institutions[1].country_code | DE |
| authorships[0].institutions[1].display_name | Technische Universität Dresden |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhan Qu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Karlsruhe Institute of Technology, Karlsruhe, Germany, ScaDS.AI, Dresden, Germany, & TU Dresden, Dresden, Germany |
| authorships[1].author.id | https://openalex.org/A5008824325 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Shuzhou Yuan |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I78650965 |
| authorships[1].affiliations[0].raw_affiliation_string | ScaDS.AI, Dresden, Germany & TU Dresden, Dresden, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I78650965 |
| authorships[1].institutions[0].ror | https://ror.org/042aqky30 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I78650965 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Technische Universität Dresden |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shuzhou Yuan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | ScaDS.AI, Dresden, Germany & TU Dresden, Dresden, Germany |
| authorships[2].author.id | https://openalex.org/A5031600582 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5458-8645 |
| authorships[2].author.display_name | Michael Färber |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I78650965 |
| authorships[2].affiliations[0].raw_affiliation_string | ScaDS.AI, Dresden, Germany & TU Dresden, Dresden, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I78650965 |
| authorships[2].institutions[0].ror | https://ror.org/042aqky30 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I78650965 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Technische Universität Dresden |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Michael Färber |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | ScaDS.AI, Dresden, Germany & TU Dresden, Dresden, Germany |
| authorships[3].author.id | https://openalex.org/A5116907174 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Marius Brennfleck |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I102335020 |
| authorships[3].affiliations[0].raw_affiliation_string | Karlsruhe Institute of Technology, Karlsruhe, Germany |
| authorships[3].institutions[0].id | https://openalex.org/I102335020 |
| authorships[3].institutions[0].ror | https://ror.org/04t3en479 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I102335020, https://openalex.org/I1305996414 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | Karlsruhe Institute of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Marius Brennfleck |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Karlsruhe Institute of Technology, Karlsruhe, Germany |
| authorships[4].author.id | https://openalex.org/A5052008156 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9672-2360 |
| authorships[4].author.display_name | Niklas Wartha |
| authorships[4].countries | DE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I2898391981, https://openalex.org/I887968799 |
| authorships[4].affiliations[0].raw_affiliation_string | Institute of Atmospheric Physics, German Aerospace Center, Oberpfaffenhofen, Germany & RWTH Aachen University, Aachen, Germany |
| authorships[4].institutions[0].id | https://openalex.org/I2898391981 |
| authorships[4].institutions[0].ror | https://ror.org/04bwf3e34 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I1305996414, https://openalex.org/I2898391981 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) |
| authorships[4].institutions[1].id | https://openalex.org/I887968799 |
| authorships[4].institutions[1].ror | https://ror.org/04xfq0f34 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I887968799 |
| authorships[4].institutions[1].country_code | DE |
| authorships[4].institutions[1].display_name | RWTH Aachen University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Niklas Wartha |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Institute of Atmospheric Physics, German Aerospace Center, Oberpfaffenhofen, Germany & RWTH Aachen University, Aachen, Germany |
| authorships[5].author.id | https://openalex.org/A5109891589 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Anton Stephan |
| authorships[5].countries | DE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I2898391981 |
| authorships[5].affiliations[0].raw_affiliation_string | Institute of Atmospheric Physics, German Aerospace Center, Oberpfaffenhofen, Germany |
| authorships[5].institutions[0].id | https://openalex.org/I2898391981 |
| authorships[5].institutions[0].ror | https://ror.org/04bwf3e34 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I1305996414, https://openalex.org/I2898391981 |
| authorships[5].institutions[0].country_code | DE |
| authorships[5].institutions[0].display_name | Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Anton Stephan |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Institute of Atmospheric Physics, German Aerospace Center, Oberpfaffenhofen, Germany |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1145/3690624.3709436 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Explainable LiDAR 3D Point Cloud Segmentation and Clustering for Detecting Airplane-Generated Wind Turbulence |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11164 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9957000017166138 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Remote Sensing and LiDAR Applications |
| related_works | https://openalex.org/W4319317934, https://openalex.org/W4406302447, https://openalex.org/W2901265155, https://openalex.org/W2956374172, https://openalex.org/W3021491005, https://openalex.org/W1986118872, https://openalex.org/W4293094720, https://openalex.org/W2739701376, https://openalex.org/W4399442168, https://openalex.org/W2114282491 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1145/3690624.3709436 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.1 |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3690624.3709436 |
| primary_location.id | doi:10.1145/3690624.3709436 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.1 |
| primary_location.landing_page_url | https://doi.org/10.1145/3690624.3709436 |
| publication_date | 2025-04-04 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3120371278, https://openalex.org/W3215426783, https://openalex.org/W4389415517, https://openalex.org/W2606462007, https://openalex.org/W3039448353, https://openalex.org/W3044996497, https://openalex.org/W2790827688, https://openalex.org/W2024789173, https://openalex.org/W2124843091, https://openalex.org/W3035236086, https://openalex.org/W2112796928, https://openalex.org/W3199138517, https://openalex.org/W2959908836, https://openalex.org/W4283124094, https://openalex.org/W6777715687, https://openalex.org/W4206364477, https://openalex.org/W2963037989, https://openalex.org/W2004156992, https://openalex.org/W2414934037, https://openalex.org/W159739185, https://openalex.org/W2910642513, https://openalex.org/W3183916535, https://openalex.org/W2979750740, https://openalex.org/W2016381774, https://openalex.org/W4221078763, https://openalex.org/W3184129168, https://openalex.org/W2982104318, https://openalex.org/W2024824443, https://openalex.org/W3101609372, https://openalex.org/W4210327135, https://openalex.org/W3024728050 |
| referenced_works_count | 31 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.6200000047683716 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.11833136 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |