Explainable LiDAR 3D Point Cloud Segmentation and Clustering for Detecting Airplane-Generated Wind Turbulence Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2503.00518
Wake vortices - strong, coherent air turbulences created by aircraft - pose a significant risk to aviation safety and therefore require accurate and reliable detection methods. In this paper, we present an advanced, explainable machine learning method that utilizes Light Detection and Ranging (LiDAR) data for effective wake vortex detection. Our method leverages a dynamic graph CNN (DGCNN) with semantic segmentation to partition a 3D LiDAR point cloud into meaningful segments. Further refinement is achieved through clustering techniques. A novel feature of our research is the use of a perturbation-based explanation technique, which clarifies the model's decision-making processes for air traffic regulators and controllers, increasing transparency and building trust. Our experimental results, based on measured and simulated LiDAR scans compared against four baseline methods, underscore the effectiveness and reliability of our approach. This combination of semantic segmentation and clustering for real-time wake vortex tracking significantly advances aviation safety measures, ensuring that these are both effective and comprehensible.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2503.00518
- https://arxiv.org/pdf/2503.00518
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415082193
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415082193Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2503.00518Digital Object Identifier
- Title
-
Explainable LiDAR 3D Point Cloud Segmentation and Clustering for Detecting Airplane-Generated Wind TurbulenceWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-01Full publication date if available
- Authors
-
Zhan Qu, Shuzhou Yuan, Michael Färber, Marius Brennfleck, Niklas Wartha, Anton StephanList of authors in order
- Landing page
-
https://arxiv.org/abs/2503.00518Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2503.00518Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2503.00518Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415082193 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2503.00518 |
| ids.doi | https://doi.org/10.48550/arxiv.2503.00518 |
| ids.openalex | https://openalex.org/W4415082193 |
| fwci | |
| type | preprint |
| title | Explainable LiDAR 3D Point Cloud Segmentation and Clustering for Detecting Airplane-Generated Wind Turbulence |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11489 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9739999771118164 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Air Traffic Management and Optimization |
| topics[1].id | https://openalex.org/T11164 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9717000126838684 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Remote Sensing and LiDAR Applications |
| topics[2].id | https://openalex.org/T12125 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9527999758720398 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Aerospace and Aviation Technology |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2503.00518 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2503.00518 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2503.00518 |
| locations[1].id | doi:10.48550/arxiv.2503.00518 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2503.00518 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5112122024 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Zhan Qu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Qu, Zhan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5008824325 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Shuzhou Yuan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yuan, Shuzhou |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5031600582 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5458-8645 |
| authorships[2].author.display_name | Michael Färber |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Färber, Michael |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5116907174 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Marius Brennfleck |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Brennfleck, Marius |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5052008156 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9672-2360 |
| authorships[4].author.display_name | Niklas Wartha |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wartha, Niklas |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5109891589 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Anton Stephan |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Stephan, Anton |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2503.00518 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-12T00:00:00 |
| display_name | Explainable LiDAR 3D Point Cloud Segmentation and Clustering for Detecting Airplane-Generated Wind Turbulence |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11489 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9739999771118164 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Air Traffic Management and Optimization |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2503.00518 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2503.00518 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2503.00518 |
| primary_location.id | pmh:oai:arXiv.org:2503.00518 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2503.00518 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2503.00518 |
| publication_date | 2025-03-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 2, 10 |
| abstract_inverted_index.A | 78 |
| abstract_inverted_index.a | 12, 53, 63, 88 |
| abstract_inverted_index.3D | 64 |
| abstract_inverted_index.In | 26 |
| abstract_inverted_index.an | 31 |
| abstract_inverted_index.by | 8 |
| abstract_inverted_index.is | 73, 84 |
| abstract_inverted_index.of | 81, 87, 129, 134 |
| abstract_inverted_index.on | 113 |
| abstract_inverted_index.to | 15, 61 |
| abstract_inverted_index.we | 29 |
| abstract_inverted_index.CNN | 56 |
| abstract_inverted_index.Our | 50, 109 |
| abstract_inverted_index.air | 5, 99 |
| abstract_inverted_index.and | 18, 22, 41, 102, 106, 115, 127, 137, 155 |
| abstract_inverted_index.are | 152 |
| abstract_inverted_index.for | 45, 98, 139 |
| abstract_inverted_index.our | 82, 130 |
| abstract_inverted_index.the | 85, 94, 125 |
| abstract_inverted_index.use | 86 |
| abstract_inverted_index.This | 132 |
| abstract_inverted_index.Wake | 0 |
| abstract_inverted_index.both | 153 |
| abstract_inverted_index.data | 44 |
| abstract_inverted_index.four | 121 |
| abstract_inverted_index.into | 68 |
| abstract_inverted_index.pose | 11 |
| abstract_inverted_index.risk | 14 |
| abstract_inverted_index.that | 37, 150 |
| abstract_inverted_index.this | 27 |
| abstract_inverted_index.wake | 47, 141 |
| abstract_inverted_index.with | 58 |
| abstract_inverted_index.LiDAR | 65, 117 |
| abstract_inverted_index.Light | 39 |
| abstract_inverted_index.based | 112 |
| abstract_inverted_index.cloud | 67 |
| abstract_inverted_index.graph | 55 |
| abstract_inverted_index.novel | 79 |
| abstract_inverted_index.point | 66 |
| abstract_inverted_index.scans | 118 |
| abstract_inverted_index.these | 151 |
| abstract_inverted_index.which | 92 |
| abstract_inverted_index.method | 36, 51 |
| abstract_inverted_index.paper, | 28 |
| abstract_inverted_index.safety | 17, 147 |
| abstract_inverted_index.trust. | 108 |
| abstract_inverted_index.vortex | 48, 142 |
| abstract_inverted_index.(DGCNN) | 57 |
| abstract_inverted_index.(LiDAR) | 43 |
| abstract_inverted_index.Further | 71 |
| abstract_inverted_index.Ranging | 42 |
| abstract_inverted_index.against | 120 |
| abstract_inverted_index.created | 7 |
| abstract_inverted_index.dynamic | 54 |
| abstract_inverted_index.feature | 80 |
| abstract_inverted_index.machine | 34 |
| abstract_inverted_index.model's | 95 |
| abstract_inverted_index.present | 30 |
| abstract_inverted_index.require | 20 |
| abstract_inverted_index.strong, | 3 |
| abstract_inverted_index.through | 75 |
| abstract_inverted_index.traffic | 100 |
| abstract_inverted_index.accurate | 21 |
| abstract_inverted_index.achieved | 74 |
| abstract_inverted_index.advances | 145 |
| abstract_inverted_index.aircraft | 9 |
| abstract_inverted_index.aviation | 16, 146 |
| abstract_inverted_index.baseline | 122 |
| abstract_inverted_index.building | 107 |
| abstract_inverted_index.coherent | 4 |
| abstract_inverted_index.compared | 119 |
| abstract_inverted_index.ensuring | 149 |
| abstract_inverted_index.learning | 35 |
| abstract_inverted_index.measured | 114 |
| abstract_inverted_index.methods, | 123 |
| abstract_inverted_index.methods. | 25 |
| abstract_inverted_index.reliable | 23 |
| abstract_inverted_index.research | 83 |
| abstract_inverted_index.results, | 111 |
| abstract_inverted_index.semantic | 59, 135 |
| abstract_inverted_index.tracking | 143 |
| abstract_inverted_index.utilizes | 38 |
| abstract_inverted_index.vortices | 1 |
| abstract_inverted_index.Detection | 40 |
| abstract_inverted_index.advanced, | 32 |
| abstract_inverted_index.approach. | 131 |
| abstract_inverted_index.clarifies | 93 |
| abstract_inverted_index.detection | 24 |
| abstract_inverted_index.effective | 46, 154 |
| abstract_inverted_index.leverages | 52 |
| abstract_inverted_index.measures, | 148 |
| abstract_inverted_index.partition | 62 |
| abstract_inverted_index.processes | 97 |
| abstract_inverted_index.real-time | 140 |
| abstract_inverted_index.segments. | 70 |
| abstract_inverted_index.simulated | 116 |
| abstract_inverted_index.therefore | 19 |
| abstract_inverted_index.clustering | 76, 138 |
| abstract_inverted_index.detection. | 49 |
| abstract_inverted_index.increasing | 104 |
| abstract_inverted_index.meaningful | 69 |
| abstract_inverted_index.refinement | 72 |
| abstract_inverted_index.regulators | 101 |
| abstract_inverted_index.technique, | 91 |
| abstract_inverted_index.underscore | 124 |
| abstract_inverted_index.combination | 133 |
| abstract_inverted_index.explainable | 33 |
| abstract_inverted_index.explanation | 90 |
| abstract_inverted_index.reliability | 128 |
| abstract_inverted_index.significant | 13 |
| abstract_inverted_index.techniques. | 77 |
| abstract_inverted_index.turbulences | 6 |
| abstract_inverted_index.controllers, | 103 |
| abstract_inverted_index.experimental | 110 |
| abstract_inverted_index.segmentation | 60, 136 |
| abstract_inverted_index.transparency | 105 |
| abstract_inverted_index.effectiveness | 126 |
| abstract_inverted_index.significantly | 144 |
| abstract_inverted_index.comprehensible. | 156 |
| abstract_inverted_index.decision-making | 96 |
| abstract_inverted_index.perturbation-based | 89 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |