Explainable machine learning for understanding and predicting geometry and defect types in Fe-Ni alloys fabricated by laser metal deposition additive manufacturing Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1016/j.jmrt.2022.11.137
Recently, there has been development toward metal additive manufacturing (MAM) because of its benefits like fabrication of complex geometries, waste minimization, freedom of design, and low-cost customization. Despite these advantages, the influence of the processing parameters on the properties of MAM products is neither well understood nor easily predictable. In this study, explainable machine learning (xML) models were applied to predict and understand the geometry and types of defects in MAM-processed Fe-Ni alloys. Gaussian process regression (GPR) was used to predict the as-printed height and porosity using data from Fe-Ni alloys produced via laser metal deposition (LMD) processing. Defect types (gas porosity, keyhole, and lack of fusion) were classified using a support vector machine (SVM) by comparing the measured and predicted porosities based on GPR. The Shapley additive explanation (SHAP) approach for xML was utilized to analyze feature importance based on both GPR and SVM data. This study provides insight into the use of the xML model in MAM to link processing with results.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.jmrt.2022.11.137
- OA Status
- gold
- Cited By
- 51
- References
- 60
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4309891831
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4309891831Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.jmrt.2022.11.137Digital Object Identifier
- Title
-
Explainable machine learning for understanding and predicting geometry and defect types in Fe-Ni alloys fabricated by laser metal deposition additive manufacturingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-24Full publication date if available
- Authors
-
Jeong‐Ah Lee, Man Jae SaGong, Jaimyun Jung, Eun Seong Kim, Hyoung Seop KimList of authors in order
- Landing page
-
https://doi.org/10.1016/j.jmrt.2022.11.137Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.jmrt.2022.11.137Direct OA link when available
- Concepts
-
Materials science, Porosity, Deposition (geology), Artificial intelligence, Support vector machine, Kriging, Feature (linguistics), Machine learning, Computer science, Process engineering, Composite material, Geology, Philosophy, Engineering, Sediment, Paleontology, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
51Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 24, 2024: 14, 2023: 13Per-year citation counts (last 5 years)
- References (count)
-
60Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4309891831 |
|---|---|
| doi | https://doi.org/10.1016/j.jmrt.2022.11.137 |
| ids.doi | https://doi.org/10.1016/j.jmrt.2022.11.137 |
| ids.openalex | https://openalex.org/W4309891831 |
| fwci | 6.30611335 |
| type | article |
| title | Explainable machine learning for understanding and predicting geometry and defect types in Fe-Ni alloys fabricated by laser metal deposition additive manufacturing |
| awards[0].id | https://openalex.org/G3289550926 |
| awards[0].funder_id | https://openalex.org/F4320322030 |
| awards[0].funder_award_id | NRF-2022R1A5A1030054 |
| awards[0].funder_display_name | Ministry of Science, ICT and Future Planning |
| biblio.issue | |
| biblio.volume | 22 |
| biblio.last_page | 423 |
| biblio.first_page | 413 |
| grants[0].funder | https://openalex.org/F4320322030 |
| grants[0].award_id | NRF-2022R1A5A1030054 |
| grants[0].funder_display_name | Ministry of Science, ICT and Future Planning |
| grants[1].funder | https://openalex.org/F4320322120 |
| grants[1].award_id | |
| grants[1].funder_display_name | National Research Foundation of Korea |
| topics[0].id | https://openalex.org/T10705 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2210 |
| topics[0].subfield.display_name | Mechanical Engineering |
| topics[0].display_name | Additive Manufacturing Materials and Processes |
| topics[1].id | https://openalex.org/T10834 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9794999957084656 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Welding Techniques and Residual Stresses |
| topics[2].id | https://openalex.org/T10783 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9764999747276306 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2203 |
| topics[2].subfield.display_name | Automotive Engineering |
| topics[2].display_name | Additive Manufacturing and 3D Printing Technologies |
| funders[0].id | https://openalex.org/F4320322030 |
| funders[0].ror | https://ror.org/032e49973 |
| funders[0].display_name | Ministry of Science, ICT and Future Planning |
| funders[1].id | https://openalex.org/F4320322120 |
| funders[1].ror | https://ror.org/013aysd81 |
| funders[1].display_name | National Research Foundation of Korea |
| is_xpac | False |
| apc_list.value | 1300 |
| apc_list.currency | USD |
| apc_list.value_usd | 1300 |
| apc_paid.value | 1300 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1300 |
| concepts[0].id | https://openalex.org/C192562407 |
| concepts[0].level | 0 |
| concepts[0].score | 0.706899106502533 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[0].display_name | Materials science |
| concepts[1].id | https://openalex.org/C6648577 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6436646580696106 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q622669 |
| concepts[1].display_name | Porosity |
| concepts[2].id | https://openalex.org/C64297162 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6157196164131165 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1987070 |
| concepts[2].display_name | Deposition (geology) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4931482672691345 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C12267149 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4912826418876648 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[4].display_name | Support vector machine |
| concepts[5].id | https://openalex.org/C81692654 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4797062277793884 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q225926 |
| concepts[5].display_name | Kriging |
| concepts[6].id | https://openalex.org/C2776401178 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4643659293651581 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[6].display_name | Feature (linguistics) |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.44508737325668335 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.35779255628585815 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C21880701 |
| concepts[9].level | 1 |
| concepts[9].score | 0.33630698919296265 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2144042 |
| concepts[9].display_name | Process engineering |
| concepts[10].id | https://openalex.org/C159985019 |
| concepts[10].level | 1 |
| concepts[10].score | 0.25329911708831787 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[10].display_name | Composite material |
| concepts[11].id | https://openalex.org/C127313418 |
| concepts[11].level | 0 |
| concepts[11].score | 0.1586904525756836 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[11].display_name | Geology |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C2816523 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q180184 |
| concepts[14].display_name | Sediment |
| concepts[15].id | https://openalex.org/C151730666 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[15].display_name | Paleontology |
| concepts[16].id | https://openalex.org/C41895202 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[16].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/materials-science |
| keywords[0].score | 0.706899106502533 |
| keywords[0].display_name | Materials science |
| keywords[1].id | https://openalex.org/keywords/porosity |
| keywords[1].score | 0.6436646580696106 |
| keywords[1].display_name | Porosity |
| keywords[2].id | https://openalex.org/keywords/deposition |
| keywords[2].score | 0.6157196164131165 |
| keywords[2].display_name | Deposition (geology) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4931482672691345 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/support-vector-machine |
| keywords[4].score | 0.4912826418876648 |
| keywords[4].display_name | Support vector machine |
| keywords[5].id | https://openalex.org/keywords/kriging |
| keywords[5].score | 0.4797062277793884 |
| keywords[5].display_name | Kriging |
| keywords[6].id | https://openalex.org/keywords/feature |
| keywords[6].score | 0.4643659293651581 |
| keywords[6].display_name | Feature (linguistics) |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.44508737325668335 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.35779255628585815 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/process-engineering |
| keywords[9].score | 0.33630698919296265 |
| keywords[9].display_name | Process engineering |
| keywords[10].id | https://openalex.org/keywords/composite-material |
| keywords[10].score | 0.25329911708831787 |
| keywords[10].display_name | Composite material |
| keywords[11].id | https://openalex.org/keywords/geology |
| keywords[11].score | 0.1586904525756836 |
| keywords[11].display_name | Geology |
| language | en |
| locations[0].id | doi:10.1016/j.jmrt.2022.11.137 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2765010971 |
| locations[0].source.issn | 2214-0697, 2238-7854 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2214-0697 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Materials Research and Technology |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Materials Research and Technology |
| locations[0].landing_page_url | https://doi.org/10.1016/j.jmrt.2022.11.137 |
| locations[1].id | pmh:oai:doaj.org/article:a45c042e0a67458fb5073d4cc5ddb36b |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].source.host_organization_lineage | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Journal of Materials Research and Technology, Vol 22, Iss , Pp 413-423 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/a45c042e0a67458fb5073d4cc5ddb36b |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5084529215 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3019-8321 |
| authorships[0].author.display_name | Jeong‐Ah Lee |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I123900574 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea |
| authorships[0].institutions[0].id | https://openalex.org/I123900574 |
| authorships[0].institutions[0].ror | https://ror.org/04xysgw12 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I123900574 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | Pohang University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jeong Ah Lee |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea |
| authorships[1].author.id | https://openalex.org/A5053727829 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Man Jae SaGong |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I123900574 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea |
| authorships[1].affiliations[1].raw_affiliation_string | Aero Technology Research Institute, Republic of Korea Air Force, Republic of Korea |
| authorships[1].institutions[0].id | https://openalex.org/I123900574 |
| authorships[1].institutions[0].ror | https://ror.org/04xysgw12 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I123900574 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Pohang University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Man Jae Sagong |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Aero Technology Research Institute, Republic of Korea Air Force, Republic of Korea, Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea |
| authorships[2].author.id | https://openalex.org/A5102715866 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Jaimyun Jung |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210108341 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Materials AI & Big-Data, Korea Institute of Materials Science (KIMS), Changwon-si, Republic of Korea |
| authorships[2].institutions[0].id | https://openalex.org/I4210108341 |
| authorships[2].institutions[0].ror | https://ror.org/01rwkhb30 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I2801339556, https://openalex.org/I4210108341, https://openalex.org/I4210144908, https://openalex.org/I4387152098 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | Korea Institute of Materials Science |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jaimyun Jung |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Materials AI & Big-Data, Korea Institute of Materials Science (KIMS), Changwon-si, Republic of Korea |
| authorships[3].author.id | https://openalex.org/A5101630625 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7480-3565 |
| authorships[3].author.display_name | Eun Seong Kim |
| authorships[3].countries | KR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I123900574 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea |
| authorships[3].institutions[0].id | https://openalex.org/I123900574 |
| authorships[3].institutions[0].ror | https://ror.org/04xysgw12 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I123900574 |
| authorships[3].institutions[0].country_code | KR |
| authorships[3].institutions[0].display_name | Pohang University of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Eun Seong Kim |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea |
| authorships[4].author.id | https://openalex.org/A5080756118 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3155-583X |
| authorships[4].author.display_name | Hyoung Seop Kim |
| authorships[4].countries | KR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I123900574 |
| authorships[4].affiliations[0].raw_affiliation_string | Graduate Institute of Ferrous Technology, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I193775966, https://openalex.org/I4210120602 |
| authorships[4].affiliations[1].raw_affiliation_string | Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea |
| authorships[4].affiliations[2].institution_ids | https://openalex.org/I123900574 |
| authorships[4].affiliations[2].raw_affiliation_string | Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea |
| authorships[4].institutions[0].id | https://openalex.org/I4210120602 |
| authorships[4].institutions[0].ror | https://ror.org/01w62yz22 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I139264467, https://openalex.org/I4210120602 |
| authorships[4].institutions[0].country_code | KR |
| authorships[4].institutions[0].display_name | Advanced Institute of Convergence Technology |
| authorships[4].institutions[1].id | https://openalex.org/I123900574 |
| authorships[4].institutions[1].ror | https://ror.org/04xysgw12 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I123900574 |
| authorships[4].institutions[1].country_code | KR |
| authorships[4].institutions[1].display_name | Pohang University of Science and Technology |
| authorships[4].institutions[2].id | https://openalex.org/I193775966 |
| authorships[4].institutions[2].ror | https://ror.org/01wjejq96 |
| authorships[4].institutions[2].type | education |
| authorships[4].institutions[2].lineage | https://openalex.org/I193775966 |
| authorships[4].institutions[2].country_code | KR |
| authorships[4].institutions[2].display_name | Yonsei University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Hyoung Seop Kim |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea, Graduate Institute of Ferrous Technology, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea, Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.jmrt.2022.11.137 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Explainable machine learning for understanding and predicting geometry and defect types in Fe-Ni alloys fabricated by laser metal deposition additive manufacturing |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10705 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2210 |
| primary_topic.subfield.display_name | Mechanical Engineering |
| primary_topic.display_name | Additive Manufacturing Materials and Processes |
| related_works | https://openalex.org/W1968523686, https://openalex.org/W298893735, https://openalex.org/W2199291344, https://openalex.org/W4210770325, https://openalex.org/W2211316729, https://openalex.org/W2167342507, https://openalex.org/W4221140712, https://openalex.org/W4247222564, https://openalex.org/W2393554192, https://openalex.org/W3123323883 |
| cited_by_count | 51 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 24 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 14 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 13 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.jmrt.2022.11.137 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2765010971 |
| best_oa_location.source.issn | 2214-0697, 2238-7854 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2214-0697 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Materials Research and Technology |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Materials Research and Technology |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.jmrt.2022.11.137 |
| primary_location.id | doi:10.1016/j.jmrt.2022.11.137 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2765010971 |
| primary_location.source.issn | 2214-0697, 2238-7854 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2214-0697 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Materials Research and Technology |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Materials Research and Technology |
| primary_location.landing_page_url | https://doi.org/10.1016/j.jmrt.2022.11.137 |
| publication_date | 2022-11-24 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2098459033, https://openalex.org/W3207445150, https://openalex.org/W3119859474, https://openalex.org/W2793435880, https://openalex.org/W3034534654, https://openalex.org/W3123315323, https://openalex.org/W3195254889, https://openalex.org/W6785215605, https://openalex.org/W3130565475, https://openalex.org/W3016989108, https://openalex.org/W4241426378, https://openalex.org/W2162977544, https://openalex.org/W6712486966, https://openalex.org/W2982608794, https://openalex.org/W3167395566, https://openalex.org/W6799403916, https://openalex.org/W3189996070, https://openalex.org/W6807838032, https://openalex.org/W4220717890, https://openalex.org/W3114692006, https://openalex.org/W4280634187, https://openalex.org/W1986605711, https://openalex.org/W2090604724, https://openalex.org/W2134833814, https://openalex.org/W1980922088, https://openalex.org/W2948140681, https://openalex.org/W6782402410, https://openalex.org/W6731682034, https://openalex.org/W2481253387, https://openalex.org/W2802378406, https://openalex.org/W2891763259, https://openalex.org/W2944168969, https://openalex.org/W6687567600, https://openalex.org/W1794957547, https://openalex.org/W3035353528, https://openalex.org/W6737947904, https://openalex.org/W3082906354, https://openalex.org/W6773177961, https://openalex.org/W6745930444, https://openalex.org/W4212849302, https://openalex.org/W2370998538, https://openalex.org/W2077193976, https://openalex.org/W2195665939, https://openalex.org/W3037280610, https://openalex.org/W3088614943, https://openalex.org/W4232371422, https://openalex.org/W2567224341, https://openalex.org/W1124618312, https://openalex.org/W2567926709, https://openalex.org/W2962862931, https://openalex.org/W2398546056, https://openalex.org/W3080402790, https://openalex.org/W3183962526, https://openalex.org/W2171033594, https://openalex.org/W3094019383, https://openalex.org/W2999700122, https://openalex.org/W2196365938, https://openalex.org/W4210269041, https://openalex.org/W1626721843, https://openalex.org/W2767606498 |
| referenced_works_count | 60 |
| abstract_inverted_index.a | 110 |
| abstract_inverted_index.In | 49 |
| abstract_inverted_index.by | 115 |
| abstract_inverted_index.in | 69, 157 |
| abstract_inverted_index.is | 42 |
| abstract_inverted_index.of | 11, 16, 22, 32, 39, 67, 105, 153 |
| abstract_inverted_index.on | 36, 123, 140 |
| abstract_inverted_index.to | 59, 79, 135, 159 |
| abstract_inverted_index.GPR | 142 |
| abstract_inverted_index.MAM | 40, 158 |
| abstract_inverted_index.SVM | 144 |
| abstract_inverted_index.The | 125 |
| abstract_inverted_index.and | 24, 61, 65, 84, 103, 119, 143 |
| abstract_inverted_index.for | 131 |
| abstract_inverted_index.has | 2 |
| abstract_inverted_index.its | 12 |
| abstract_inverted_index.nor | 46 |
| abstract_inverted_index.the | 30, 33, 37, 63, 81, 117, 151, 154 |
| abstract_inverted_index.use | 152 |
| abstract_inverted_index.via | 92 |
| abstract_inverted_index.was | 77, 133 |
| abstract_inverted_index.xML | 132, 155 |
| abstract_inverted_index.(gas | 100 |
| abstract_inverted_index.GPR. | 124 |
| abstract_inverted_index.This | 146 |
| abstract_inverted_index.been | 3 |
| abstract_inverted_index.both | 141 |
| abstract_inverted_index.data | 87 |
| abstract_inverted_index.from | 88 |
| abstract_inverted_index.into | 150 |
| abstract_inverted_index.lack | 104 |
| abstract_inverted_index.like | 14 |
| abstract_inverted_index.link | 160 |
| abstract_inverted_index.this | 50 |
| abstract_inverted_index.used | 78 |
| abstract_inverted_index.well | 44 |
| abstract_inverted_index.were | 57, 107 |
| abstract_inverted_index.with | 162 |
| abstract_inverted_index.(GPR) | 76 |
| abstract_inverted_index.(LMD) | 96 |
| abstract_inverted_index.(MAM) | 9 |
| abstract_inverted_index.(SVM) | 114 |
| abstract_inverted_index.(xML) | 55 |
| abstract_inverted_index.Fe-Ni | 71, 89 |
| abstract_inverted_index.based | 122, 139 |
| abstract_inverted_index.data. | 145 |
| abstract_inverted_index.laser | 93 |
| abstract_inverted_index.metal | 6, 94 |
| abstract_inverted_index.model | 156 |
| abstract_inverted_index.study | 147 |
| abstract_inverted_index.there | 1 |
| abstract_inverted_index.these | 28 |
| abstract_inverted_index.types | 66, 99 |
| abstract_inverted_index.using | 86, 109 |
| abstract_inverted_index.waste | 19 |
| abstract_inverted_index.(SHAP) | 129 |
| abstract_inverted_index.Defect | 98 |
| abstract_inverted_index.alloys | 90 |
| abstract_inverted_index.easily | 47 |
| abstract_inverted_index.height | 83 |
| abstract_inverted_index.models | 56 |
| abstract_inverted_index.study, | 51 |
| abstract_inverted_index.toward | 5 |
| abstract_inverted_index.vector | 112 |
| abstract_inverted_index.Despite | 27 |
| abstract_inverted_index.Shapley | 126 |
| abstract_inverted_index.alloys. | 72 |
| abstract_inverted_index.analyze | 136 |
| abstract_inverted_index.applied | 58 |
| abstract_inverted_index.because | 10 |
| abstract_inverted_index.complex | 17 |
| abstract_inverted_index.defects | 68 |
| abstract_inverted_index.design, | 23 |
| abstract_inverted_index.feature | 137 |
| abstract_inverted_index.freedom | 21 |
| abstract_inverted_index.fusion) | 106 |
| abstract_inverted_index.insight | 149 |
| abstract_inverted_index.machine | 53, 113 |
| abstract_inverted_index.neither | 43 |
| abstract_inverted_index.predict | 60, 80 |
| abstract_inverted_index.process | 74 |
| abstract_inverted_index.support | 111 |
| abstract_inverted_index.Gaussian | 73 |
| abstract_inverted_index.additive | 7, 127 |
| abstract_inverted_index.approach | 130 |
| abstract_inverted_index.benefits | 13 |
| abstract_inverted_index.geometry | 64 |
| abstract_inverted_index.keyhole, | 102 |
| abstract_inverted_index.learning | 54 |
| abstract_inverted_index.low-cost | 25 |
| abstract_inverted_index.measured | 118 |
| abstract_inverted_index.porosity | 85 |
| abstract_inverted_index.produced | 91 |
| abstract_inverted_index.products | 41 |
| abstract_inverted_index.provides | 148 |
| abstract_inverted_index.results. | 163 |
| abstract_inverted_index.utilized | 134 |
| abstract_inverted_index.Recently, | 0 |
| abstract_inverted_index.comparing | 116 |
| abstract_inverted_index.influence | 31 |
| abstract_inverted_index.porosity, | 101 |
| abstract_inverted_index.predicted | 120 |
| abstract_inverted_index.as-printed | 82 |
| abstract_inverted_index.classified | 108 |
| abstract_inverted_index.deposition | 95 |
| abstract_inverted_index.importance | 138 |
| abstract_inverted_index.parameters | 35 |
| abstract_inverted_index.porosities | 121 |
| abstract_inverted_index.processing | 34, 161 |
| abstract_inverted_index.properties | 38 |
| abstract_inverted_index.regression | 75 |
| abstract_inverted_index.understand | 62 |
| abstract_inverted_index.understood | 45 |
| abstract_inverted_index.advantages, | 29 |
| abstract_inverted_index.development | 4 |
| abstract_inverted_index.explainable | 52 |
| abstract_inverted_index.explanation | 128 |
| abstract_inverted_index.fabrication | 15 |
| abstract_inverted_index.geometries, | 18 |
| abstract_inverted_index.processing. | 97 |
| abstract_inverted_index.predictable. | 48 |
| abstract_inverted_index.MAM-processed | 70 |
| abstract_inverted_index.manufacturing | 8 |
| abstract_inverted_index.minimization, | 20 |
| abstract_inverted_index.customization. | 26 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| corresponding_author_ids | https://openalex.org/A5102715866, https://openalex.org/A5080756118 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I123900574, https://openalex.org/I193775966, https://openalex.org/I4210108341, https://openalex.org/I4210120602 |
| citation_normalized_percentile.value | 0.97155711 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |