Explaining Multi-stage Tasks by Learning Temporal Logic Formulas from Suboptimal Demonstrations Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2006.02411
We present a method for learning multi-stage tasks from demonstrations by learning the logical structure and atomic propositions of a consistent linear temporal logic (LTL) formula. The learner is given successful but potentially suboptimal demonstrations, where the demonstrator is optimizing a cost function while satisfying the LTL formula, and the cost function is uncertain to the learner. Our algorithm uses the Karush-Kuhn-Tucker (KKT) optimality conditions of the demonstrations together with a counterexample-guided falsification strategy to learn the atomic proposition parameters and logical structure of the LTL formula, respectively. We provide theoretical guarantees on the conservativeness of the recovered atomic proposition sets, as well as completeness in the search for finding an LTL formula consistent with the demonstrations. We evaluate our method on high-dimensional nonlinear systems by learning LTL formulas explaining multi-stage tasks on 7-DOF arm and quadrotor systems and show that it outperforms competing methods for learning LTL formulas from positive examples.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2006.02411
- https://arxiv.org/pdf/2006.02411
- OA Status
- green
- Cited By
- 2
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3033475064
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3033475064Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2006.02411Digital Object Identifier
- Title
-
Explaining Multi-stage Tasks by Learning Temporal Logic Formulas from Suboptimal DemonstrationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-06-03Full publication date if available
- Authors
-
Glen Chou, Necmiye Özay, Dmitry BerensonList of authors in order
- Landing page
-
https://arxiv.org/abs/2006.02411Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2006.02411Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2006.02411Direct OA link when available
- Concepts
-
Karush–Kuhn–Tucker conditions, Counterexample, Proposition, Completeness (order theory), Function (biology), Linear temporal logic, Mathematics, Temporal logic, Computer science, Theoretical computer science, Artificial intelligence, Discrete mathematics, Mathematical optimization, Biology, Epistemology, Philosophy, Evolutionary biology, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3033475064 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2006.02411 |
| ids.doi | https://doi.org/10.48550/arxiv.2006.02411 |
| ids.mag | 3033475064 |
| ids.openalex | https://openalex.org/W3033475064 |
| fwci | |
| type | preprint |
| title | Explaining Multi-stage Tasks by Learning Temporal Logic Formulas from Suboptimal Demonstrations |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10142 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9943000078201294 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Formal Methods in Verification |
| topics[1].id | https://openalex.org/T12072 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9941999912261963 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and Algorithms |
| topics[2].id | https://openalex.org/T11178 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.991100013256073 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Receptor Mechanisms and Signaling |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C50454189 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8840857744216919 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2075125 |
| concepts[0].display_name | Karush–Kuhn–Tucker conditions |
| concepts[1].id | https://openalex.org/C162838799 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7774028778076172 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q596077 |
| concepts[1].display_name | Counterexample |
| concepts[2].id | https://openalex.org/C2777152325 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6260339617729187 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q108163 |
| concepts[2].display_name | Proposition |
| concepts[3].id | https://openalex.org/C17231256 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5863391757011414 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5156540 |
| concepts[3].display_name | Completeness (order theory) |
| concepts[4].id | https://openalex.org/C14036430 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5560890436172485 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[4].display_name | Function (biology) |
| concepts[5].id | https://openalex.org/C4777664 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5407118797302246 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1536492 |
| concepts[5].display_name | Linear temporal logic |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.48470306396484375 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C25016198 |
| concepts[7].level | 2 |
| concepts[7].score | 0.44808048009872437 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q781833 |
| concepts[7].display_name | Temporal logic |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.44639384746551514 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C80444323 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3736017346382141 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[9].display_name | Theoretical computer science |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3698806166648865 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C118615104 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2931390404701233 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[11].display_name | Discrete mathematics |
| concepts[12].id | https://openalex.org/C126255220 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2927303612232208 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[12].display_name | Mathematical optimization |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| concepts[14].id | https://openalex.org/C111472728 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[14].display_name | Epistemology |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| concepts[16].id | https://openalex.org/C78458016 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[16].display_name | Evolutionary biology |
| concepts[17].id | https://openalex.org/C134306372 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[17].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/karush–kuhn–tucker-conditions |
| keywords[0].score | 0.8840857744216919 |
| keywords[0].display_name | Karush–Kuhn–Tucker conditions |
| keywords[1].id | https://openalex.org/keywords/counterexample |
| keywords[1].score | 0.7774028778076172 |
| keywords[1].display_name | Counterexample |
| keywords[2].id | https://openalex.org/keywords/proposition |
| keywords[2].score | 0.6260339617729187 |
| keywords[2].display_name | Proposition |
| keywords[3].id | https://openalex.org/keywords/completeness |
| keywords[3].score | 0.5863391757011414 |
| keywords[3].display_name | Completeness (order theory) |
| keywords[4].id | https://openalex.org/keywords/function |
| keywords[4].score | 0.5560890436172485 |
| keywords[4].display_name | Function (biology) |
| keywords[5].id | https://openalex.org/keywords/linear-temporal-logic |
| keywords[5].score | 0.5407118797302246 |
| keywords[5].display_name | Linear temporal logic |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.48470306396484375 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/temporal-logic |
| keywords[7].score | 0.44808048009872437 |
| keywords[7].display_name | Temporal logic |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.44639384746551514 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[9].score | 0.3736017346382141 |
| keywords[9].display_name | Theoretical computer science |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.3698806166648865 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[11].score | 0.2931390404701233 |
| keywords[11].display_name | Discrete mathematics |
| keywords[12].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[12].score | 0.2927303612232208 |
| keywords[12].display_name | Mathematical optimization |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2006.02411 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2006.02411 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2006.02411 |
| locations[1].id | doi:10.48550/arxiv.2006.02411 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2006.02411 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5006149535 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4444-3631 |
| authorships[0].author.display_name | Glen Chou |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Glen Chou |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5054418471 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5552-4392 |
| authorships[1].author.display_name | Necmiye Özay |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Necmiye Ozay |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5083082888 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9712-109X |
| authorships[2].author.display_name | Dmitry Berenson |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I27837315 |
| authorships[2].affiliations[0].raw_affiliation_string | †University of Michigan |
| authorships[2].institutions[0].id | https://openalex.org/I27837315 |
| authorships[2].institutions[0].ror | https://ror.org/00jmfr291 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I27837315 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Michigan |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Dmitry Berenson |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | †University of Michigan |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2006.02411 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2020-06-12T00:00:00 |
| display_name | Explaining Multi-stage Tasks by Learning Temporal Logic Formulas from Suboptimal Demonstrations |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10142 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9943000078201294 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Formal Methods in Verification |
| related_works | https://openalex.org/W2124110813, https://openalex.org/W3021103820, https://openalex.org/W2763487042, https://openalex.org/W2521108391, https://openalex.org/W1532447905, https://openalex.org/W2031188261, https://openalex.org/W4285022830, https://openalex.org/W4232446061, https://openalex.org/W2077520193, https://openalex.org/W1513400763 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2020 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2006.02411 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2006.02411 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2006.02411 |
| primary_location.id | pmh:oai:arXiv.org:2006.02411 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2006.02411 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2006.02411 |
| publication_date | 2020-06-03 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2951254705, https://openalex.org/W1498432697, https://openalex.org/W2887933419, https://openalex.org/W371510500, https://openalex.org/W2783370231, https://openalex.org/W2107308405, https://openalex.org/W2339807279, https://openalex.org/W2887255180, https://openalex.org/W3012060347, https://openalex.org/W2739094621, https://openalex.org/W2605590175, https://openalex.org/W2091682553, https://openalex.org/W2086092403, https://openalex.org/W2966183138, https://openalex.org/W2889713213, https://openalex.org/W2737702598, https://openalex.org/W2795506272, https://openalex.org/W1999874108, https://openalex.org/W2883140436, https://openalex.org/W2971273347, https://openalex.org/W1986014385, https://openalex.org/W2912432686, https://openalex.org/W2175161357, https://openalex.org/W3008128154, https://openalex.org/W1762430620, https://openalex.org/W2211996086, https://openalex.org/W2143760481, https://openalex.org/W2963562508, https://openalex.org/W2965569070, https://openalex.org/W1569248486, https://openalex.org/W3023096123, https://openalex.org/W3032881759, https://openalex.org/W2474788619, https://openalex.org/W2296319761, https://openalex.org/W2169498096, https://openalex.org/W2061562262, https://openalex.org/W2026379532, https://openalex.org/W2027161089, https://openalex.org/W2158607953 |
| referenced_works_count | 39 |
| abstract_inverted_index.a | 2, 19, 40, 70 |
| abstract_inverted_index.We | 0, 88, 117 |
| abstract_inverted_index.an | 110 |
| abstract_inverted_index.as | 101, 103 |
| abstract_inverted_index.by | 10, 125 |
| abstract_inverted_index.in | 105 |
| abstract_inverted_index.is | 28, 38, 52 |
| abstract_inverted_index.it | 141 |
| abstract_inverted_index.of | 18, 65, 83, 95 |
| abstract_inverted_index.on | 92, 121, 132 |
| abstract_inverted_index.to | 54, 74 |
| abstract_inverted_index.LTL | 46, 85, 111, 127, 147 |
| abstract_inverted_index.Our | 57 |
| abstract_inverted_index.The | 26 |
| abstract_inverted_index.and | 15, 48, 80, 135, 138 |
| abstract_inverted_index.arm | 134 |
| abstract_inverted_index.but | 31 |
| abstract_inverted_index.for | 4, 108, 145 |
| abstract_inverted_index.our | 119 |
| abstract_inverted_index.the | 12, 36, 45, 49, 55, 60, 66, 76, 84, 93, 96, 106, 115 |
| abstract_inverted_index.cost | 41, 50 |
| abstract_inverted_index.from | 8, 149 |
| abstract_inverted_index.show | 139 |
| abstract_inverted_index.that | 140 |
| abstract_inverted_index.uses | 59 |
| abstract_inverted_index.well | 102 |
| abstract_inverted_index.with | 69, 114 |
| abstract_inverted_index.(KKT) | 62 |
| abstract_inverted_index.(LTL) | 24 |
| abstract_inverted_index.7-DOF | 133 |
| abstract_inverted_index.given | 29 |
| abstract_inverted_index.learn | 75 |
| abstract_inverted_index.logic | 23 |
| abstract_inverted_index.sets, | 100 |
| abstract_inverted_index.tasks | 7, 131 |
| abstract_inverted_index.where | 35 |
| abstract_inverted_index.while | 43 |
| abstract_inverted_index.atomic | 16, 77, 98 |
| abstract_inverted_index.linear | 21 |
| abstract_inverted_index.method | 3, 120 |
| abstract_inverted_index.search | 107 |
| abstract_inverted_index.finding | 109 |
| abstract_inverted_index.formula | 112 |
| abstract_inverted_index.learner | 27 |
| abstract_inverted_index.logical | 13, 81 |
| abstract_inverted_index.methods | 144 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.provide | 89 |
| abstract_inverted_index.systems | 124, 137 |
| abstract_inverted_index.evaluate | 118 |
| abstract_inverted_index.formula, | 47, 86 |
| abstract_inverted_index.formula. | 25 |
| abstract_inverted_index.formulas | 128, 148 |
| abstract_inverted_index.function | 42, 51 |
| abstract_inverted_index.learner. | 56 |
| abstract_inverted_index.learning | 5, 11, 126, 146 |
| abstract_inverted_index.positive | 150 |
| abstract_inverted_index.strategy | 73 |
| abstract_inverted_index.temporal | 22 |
| abstract_inverted_index.together | 68 |
| abstract_inverted_index.algorithm | 58 |
| abstract_inverted_index.competing | 143 |
| abstract_inverted_index.examples. | 151 |
| abstract_inverted_index.nonlinear | 123 |
| abstract_inverted_index.quadrotor | 136 |
| abstract_inverted_index.recovered | 97 |
| abstract_inverted_index.structure | 14, 82 |
| abstract_inverted_index.uncertain | 53 |
| abstract_inverted_index.conditions | 64 |
| abstract_inverted_index.consistent | 20, 113 |
| abstract_inverted_index.explaining | 129 |
| abstract_inverted_index.guarantees | 91 |
| abstract_inverted_index.optimality | 63 |
| abstract_inverted_index.optimizing | 39 |
| abstract_inverted_index.parameters | 79 |
| abstract_inverted_index.satisfying | 44 |
| abstract_inverted_index.suboptimal | 33 |
| abstract_inverted_index.successful | 30 |
| abstract_inverted_index.multi-stage | 6, 130 |
| abstract_inverted_index.outperforms | 142 |
| abstract_inverted_index.potentially | 32 |
| abstract_inverted_index.proposition | 78, 99 |
| abstract_inverted_index.theoretical | 90 |
| abstract_inverted_index.completeness | 104 |
| abstract_inverted_index.demonstrator | 37 |
| abstract_inverted_index.propositions | 17 |
| abstract_inverted_index.falsification | 72 |
| abstract_inverted_index.respectively. | 87 |
| abstract_inverted_index.demonstrations | 9, 67 |
| abstract_inverted_index.demonstrations, | 34 |
| abstract_inverted_index.demonstrations. | 116 |
| abstract_inverted_index.conservativeness | 94 |
| abstract_inverted_index.high-dimensional | 122 |
| abstract_inverted_index.Karush-Kuhn-Tucker | 61 |
| abstract_inverted_index.counterexample-guided | 71 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.6100000143051147 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile |