Explaining the Unexplained: Revealing Hidden Correlations for Better Interpretability Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2412.01365
Deep learning has achieved remarkable success in processing and managing unstructured data. However, its "black box" nature imposes significant limitations, particularly in sensitive application domains. While existing interpretable machine learning methods address some of these issues, they often fail to adequately consider feature correlations and provide insufficient evaluation of model decision paths. To overcome these challenges, this paper introduces Real Explainer (RealExp), an interpretability computation method that decouples the Shapley Value into individual feature importance and feature correlation importance. By incorporating feature similarity computations, RealExp enhances interpretability by precisely quantifying both individual feature contributions and their interactions, leading to more reliable and nuanced explanations. Additionally, this paper proposes a novel interpretability evaluation criterion focused on elucidating the decision paths of deep learning models, going beyond traditional accuracy-based metrics. Experimental validations on two unstructured data tasks -- image classification and text sentiment analysis -- demonstrate that RealExp significantly outperforms existing methods in interpretability. Case studies further illustrate its practical value: in image classification, RealExp aids in selecting suitable pre-trained models for specific tasks from an interpretability perspective; in text classification, it enables the optimization of models and approximates the performance of a fine-tuned GPT-Ada model using traditional bag-of-words approaches.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2412.01365
- https://arxiv.org/pdf/2412.01365
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405034271
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405034271Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2412.01365Digital Object Identifier
- Title
-
Explaining the Unexplained: Revealing Hidden Correlations for Better InterpretabilityWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-02Full publication date if available
- Authors
-
Wendong Jiang, Chih‐Yung Chang, Show-Jane Yen, Diptendu Sinha RoyList of authors in order
- Landing page
-
https://arxiv.org/abs/2412.01365Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2412.01365Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2412.01365Direct OA link when available
- Concepts
-
Interpretability, Econometrics, Computer science, Artificial intelligence, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405034271 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2412.01365 |
| ids.doi | https://doi.org/10.48550/arxiv.2412.01365 |
| ids.openalex | https://openalex.org/W4405034271 |
| fwci | |
| type | preprint |
| title | Explaining the Unexplained: Revealing Hidden Correlations for Better Interpretability |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8079000115394592 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2781067378 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8964316248893738 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[0].display_name | Interpretability |
| concepts[1].id | https://openalex.org/C149782125 |
| concepts[1].level | 1 |
| concepts[1].score | 0.3827180564403534 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[1].display_name | Econometrics |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.33376359939575195 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.307199090719223 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C162324750 |
| concepts[4].level | 0 |
| concepts[4].score | 0.2785315215587616 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[4].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/interpretability |
| keywords[0].score | 0.8964316248893738 |
| keywords[0].display_name | Interpretability |
| keywords[1].id | https://openalex.org/keywords/econometrics |
| keywords[1].score | 0.3827180564403534 |
| keywords[1].display_name | Econometrics |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.33376359939575195 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.307199090719223 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/economics |
| keywords[4].score | 0.2785315215587616 |
| keywords[4].display_name | Economics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2412.01365 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2412.01365 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2412.01365 |
| locations[1].id | doi:10.48550/arxiv.2412.01365 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2412.01365 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5047519765 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Wendong Jiang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jiang, Wen-Dong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5002582301 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0672-5593 |
| authorships[1].author.display_name | Chih‐Yung Chang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chang, Chih-Yung |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5037108143 |
| authorships[2].author.orcid | https://orcid.org/0009-0006-5100-5030 |
| authorships[2].author.display_name | Show-Jane Yen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yen, Show-Jane |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5011943818 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9731-2534 |
| authorships[3].author.display_name | Diptendu Sinha Roy |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Roy, Diptendu Sinha |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2412.01365 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Explaining the Unexplained: Revealing Hidden Correlations for Better Interpretability |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8079000115394592 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2905433371, https://openalex.org/W2888392564, https://openalex.org/W4310278675, https://openalex.org/W4388422664, https://openalex.org/W4390569940, https://openalex.org/W4361193272, https://openalex.org/W2963326959 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2412.01365 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2412.01365 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2412.01365 |
| primary_location.id | pmh:oai:arXiv.org:2412.01365 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2412.01365 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2412.01365 |
| publication_date | 2024-12-02 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 108, 190 |
| abstract_inverted_index.-- | 135, 142 |
| abstract_inverted_index.By | 79 |
| abstract_inverted_index.To | 52 |
| abstract_inverted_index.an | 62, 173 |
| abstract_inverted_index.by | 87 |
| abstract_inverted_index.in | 6, 21, 150, 159, 164, 176 |
| abstract_inverted_index.it | 179 |
| abstract_inverted_index.of | 33, 48, 119, 183, 189 |
| abstract_inverted_index.on | 114, 130 |
| abstract_inverted_index.to | 39, 98 |
| abstract_inverted_index.and | 8, 44, 75, 94, 101, 138, 185 |
| abstract_inverted_index.for | 169 |
| abstract_inverted_index.has | 2 |
| abstract_inverted_index.its | 13, 156 |
| abstract_inverted_index.the | 68, 116, 181, 187 |
| abstract_inverted_index.two | 131 |
| abstract_inverted_index.Case | 152 |
| abstract_inverted_index.Deep | 0 |
| abstract_inverted_index.Real | 59 |
| abstract_inverted_index.aids | 163 |
| abstract_inverted_index.both | 90 |
| abstract_inverted_index.box" | 15 |
| abstract_inverted_index.data | 133 |
| abstract_inverted_index.deep | 120 |
| abstract_inverted_index.fail | 38 |
| abstract_inverted_index.from | 172 |
| abstract_inverted_index.into | 71 |
| abstract_inverted_index.more | 99 |
| abstract_inverted_index.some | 32 |
| abstract_inverted_index.text | 139, 177 |
| abstract_inverted_index.that | 66, 144 |
| abstract_inverted_index.they | 36 |
| abstract_inverted_index.this | 56, 105 |
| abstract_inverted_index.Value | 70 |
| abstract_inverted_index.While | 25 |
| abstract_inverted_index.data. | 11 |
| abstract_inverted_index.going | 123 |
| abstract_inverted_index.image | 136, 160 |
| abstract_inverted_index.model | 49, 193 |
| abstract_inverted_index.novel | 109 |
| abstract_inverted_index.often | 37 |
| abstract_inverted_index.paper | 57, 106 |
| abstract_inverted_index.paths | 118 |
| abstract_inverted_index.tasks | 134, 171 |
| abstract_inverted_index.their | 95 |
| abstract_inverted_index.these | 34, 54 |
| abstract_inverted_index.using | 194 |
| abstract_inverted_index."black | 14 |
| abstract_inverted_index.beyond | 124 |
| abstract_inverted_index.method | 65 |
| abstract_inverted_index.models | 168, 184 |
| abstract_inverted_index.nature | 16 |
| abstract_inverted_index.paths. | 51 |
| abstract_inverted_index.value: | 158 |
| abstract_inverted_index.GPT-Ada | 192 |
| abstract_inverted_index.RealExp | 84, 145, 162 |
| abstract_inverted_index.Shapley | 69 |
| abstract_inverted_index.address | 31 |
| abstract_inverted_index.enables | 180 |
| abstract_inverted_index.feature | 42, 73, 76, 81, 92 |
| abstract_inverted_index.focused | 113 |
| abstract_inverted_index.further | 154 |
| abstract_inverted_index.imposes | 17 |
| abstract_inverted_index.issues, | 35 |
| abstract_inverted_index.leading | 97 |
| abstract_inverted_index.machine | 28 |
| abstract_inverted_index.methods | 30, 149 |
| abstract_inverted_index.models, | 122 |
| abstract_inverted_index.nuanced | 102 |
| abstract_inverted_index.provide | 45 |
| abstract_inverted_index.studies | 153 |
| abstract_inverted_index.success | 5 |
| abstract_inverted_index.However, | 12 |
| abstract_inverted_index.achieved | 3 |
| abstract_inverted_index.analysis | 141 |
| abstract_inverted_index.consider | 41 |
| abstract_inverted_index.decision | 50, 117 |
| abstract_inverted_index.domains. | 24 |
| abstract_inverted_index.enhances | 85 |
| abstract_inverted_index.existing | 26, 148 |
| abstract_inverted_index.learning | 1, 29, 121 |
| abstract_inverted_index.managing | 9 |
| abstract_inverted_index.metrics. | 127 |
| abstract_inverted_index.overcome | 53 |
| abstract_inverted_index.proposes | 107 |
| abstract_inverted_index.reliable | 100 |
| abstract_inverted_index.specific | 170 |
| abstract_inverted_index.suitable | 166 |
| abstract_inverted_index.Explainer | 60 |
| abstract_inverted_index.criterion | 112 |
| abstract_inverted_index.decouples | 67 |
| abstract_inverted_index.practical | 157 |
| abstract_inverted_index.precisely | 88 |
| abstract_inverted_index.selecting | 165 |
| abstract_inverted_index.sensitive | 22 |
| abstract_inverted_index.sentiment | 140 |
| abstract_inverted_index.(RealExp), | 61 |
| abstract_inverted_index.adequately | 40 |
| abstract_inverted_index.evaluation | 47, 111 |
| abstract_inverted_index.fine-tuned | 191 |
| abstract_inverted_index.illustrate | 155 |
| abstract_inverted_index.importance | 74 |
| abstract_inverted_index.individual | 72, 91 |
| abstract_inverted_index.introduces | 58 |
| abstract_inverted_index.processing | 7 |
| abstract_inverted_index.remarkable | 4 |
| abstract_inverted_index.similarity | 82 |
| abstract_inverted_index.application | 23 |
| abstract_inverted_index.approaches. | 197 |
| abstract_inverted_index.challenges, | 55 |
| abstract_inverted_index.computation | 64 |
| abstract_inverted_index.correlation | 77 |
| abstract_inverted_index.demonstrate | 143 |
| abstract_inverted_index.elucidating | 115 |
| abstract_inverted_index.importance. | 78 |
| abstract_inverted_index.outperforms | 147 |
| abstract_inverted_index.performance | 188 |
| abstract_inverted_index.pre-trained | 167 |
| abstract_inverted_index.quantifying | 89 |
| abstract_inverted_index.significant | 18 |
| abstract_inverted_index.traditional | 125, 195 |
| abstract_inverted_index.validations | 129 |
| abstract_inverted_index.Experimental | 128 |
| abstract_inverted_index.approximates | 186 |
| abstract_inverted_index.bag-of-words | 196 |
| abstract_inverted_index.correlations | 43 |
| abstract_inverted_index.insufficient | 46 |
| abstract_inverted_index.limitations, | 19 |
| abstract_inverted_index.optimization | 182 |
| abstract_inverted_index.particularly | 20 |
| abstract_inverted_index.perspective; | 175 |
| abstract_inverted_index.unstructured | 10, 132 |
| abstract_inverted_index.Additionally, | 104 |
| abstract_inverted_index.computations, | 83 |
| abstract_inverted_index.contributions | 93 |
| abstract_inverted_index.explanations. | 103 |
| abstract_inverted_index.incorporating | 80 |
| abstract_inverted_index.interactions, | 96 |
| abstract_inverted_index.interpretable | 27 |
| abstract_inverted_index.significantly | 146 |
| abstract_inverted_index.accuracy-based | 126 |
| abstract_inverted_index.classification | 137 |
| abstract_inverted_index.classification, | 161, 178 |
| abstract_inverted_index.interpretability | 63, 86, 110, 174 |
| abstract_inverted_index.interpretability. | 151 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |