Explanations of Large Language Models Explain Language Representations in the Brain Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.14671
Large language models (LLMs) not only exhibit human-like performance but also share computational principles with the brain's language processing mechanisms. While prior research has focused on mapping LLMs' internal representations to neural activity, we propose a novel approach using explainable AI (XAI) to strengthen this link. Applying attribution methods, we quantify the influence of preceding words on LLMs' next-word predictions and use these explanations to predict fMRI data from participants listening to narratives. We find that attribution methods robustly predict brain activity across the language network, revealing a hierarchical pattern: explanations from early layers align with the brain's initial language processing stages, while later layers correspond to more advanced stages. Additionally, layers with greater influence on next-word prediction$\unicode{x2014}$reflected in higher attribution scores$\unicode{x2014}$demonstrate stronger brain alignment. These results underscore XAI's potential for exploring the neural basis of language and suggest brain alignment for assessing the biological plausibility of explanation methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.14671
- https://arxiv.org/pdf/2502.14671
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407810269
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407810269Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.14671Digital Object Identifier
- Title
-
Explanations of Large Language Models Explain Language Representations in the BrainWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-20Full publication date if available
- Authors
-
Maryam Rahimi, Yadollah Yaghoobzadeh, Mohammad Reza DaliriList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.14671Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.14671Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.14671Direct OA link when available
- Concepts
-
Linguistics, Computer science, Language model, Psychology, Cognitive science, Natural language processing, Cognitive psychology, Artificial intelligence, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407810269 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.14671 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.14671 |
| ids.openalex | https://openalex.org/W4407810269 |
| fwci | |
| type | preprint |
| title | Explanations of Large Language Models Explain Language Representations in the Brain |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10181 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.6962000131607056 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Natural Language Processing Techniques |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.692799985408783 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| topics[2].id | https://openalex.org/T12090 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.6773999929428101 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3316 |
| topics[2].subfield.display_name | Cultural Studies |
| topics[2].display_name | Language and cultural evolution |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41895202 |
| concepts[0].level | 1 |
| concepts[0].score | 0.5019333362579346 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[0].display_name | Linguistics |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.45831555128097534 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C137293760 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4227461814880371 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3621696 |
| concepts[2].display_name | Language model |
| concepts[3].id | https://openalex.org/C15744967 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3894190788269043 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[3].display_name | Psychology |
| concepts[4].id | https://openalex.org/C188147891 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3826119601726532 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q147638 |
| concepts[4].display_name | Cognitive science |
| concepts[5].id | https://openalex.org/C204321447 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3745190501213074 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[5].display_name | Natural language processing |
| concepts[6].id | https://openalex.org/C180747234 |
| concepts[6].level | 1 |
| concepts[6].score | 0.346797913312912 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[6].display_name | Cognitive psychology |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3335057497024536 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C138885662 |
| concepts[8].level | 0 |
| concepts[8].score | 0.11132815480232239 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[8].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/linguistics |
| keywords[0].score | 0.5019333362579346 |
| keywords[0].display_name | Linguistics |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.45831555128097534 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/language-model |
| keywords[2].score | 0.4227461814880371 |
| keywords[2].display_name | Language model |
| keywords[3].id | https://openalex.org/keywords/psychology |
| keywords[3].score | 0.3894190788269043 |
| keywords[3].display_name | Psychology |
| keywords[4].id | https://openalex.org/keywords/cognitive-science |
| keywords[4].score | 0.3826119601726532 |
| keywords[4].display_name | Cognitive science |
| keywords[5].id | https://openalex.org/keywords/natural-language-processing |
| keywords[5].score | 0.3745190501213074 |
| keywords[5].display_name | Natural language processing |
| keywords[6].id | https://openalex.org/keywords/cognitive-psychology |
| keywords[6].score | 0.346797913312912 |
| keywords[6].display_name | Cognitive psychology |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.3335057497024536 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/philosophy |
| keywords[8].score | 0.11132815480232239 |
| keywords[8].display_name | Philosophy |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.14671 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.14671 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.14671 |
| locations[1].id | doi:10.48550/arxiv.2502.14671 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.14671 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101837226 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4867-3178 |
| authorships[0].author.display_name | Maryam Rahimi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rahimi, Maryam |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5031030600 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0646-0852 |
| authorships[1].author.display_name | Yadollah Yaghoobzadeh |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yaghoobzadeh, Yadollah |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5086383664 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9241-8751 |
| authorships[2].author.display_name | Mohammad Reza Daliri |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Daliri, Mohammad Reza |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.14671 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-02-22T00:00:00 |
| display_name | Explanations of Large Language Models Explain Language Representations in the Brain |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10181 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.6962000131607056 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Natural Language Processing Techniques |
| related_works | https://openalex.org/W2169518243, https://openalex.org/W405926467, https://openalex.org/W2252095989, https://openalex.org/W4402742086, https://openalex.org/W1965611333, https://openalex.org/W4404882811, https://openalex.org/W2106335228, https://openalex.org/W2105076537, https://openalex.org/W2032228042, https://openalex.org/W1505098369 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.14671 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.14671 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.14671 |
| primary_location.id | pmh:oai:arXiv.org:2502.14671 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.14671 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.14671 |
| publication_date | 2025-02-20 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 35, 87 |
| abstract_inverted_index.AI | 40 |
| abstract_inverted_index.We | 73 |
| abstract_inverted_index.in | 118 |
| abstract_inverted_index.of | 53, 135, 146 |
| abstract_inverted_index.on | 25, 56, 115 |
| abstract_inverted_index.to | 30, 42, 64, 71, 106 |
| abstract_inverted_index.we | 33, 49 |
| abstract_inverted_index.and | 60, 137 |
| abstract_inverted_index.but | 9 |
| abstract_inverted_index.for | 130, 141 |
| abstract_inverted_index.has | 23 |
| abstract_inverted_index.not | 4 |
| abstract_inverted_index.the | 15, 51, 83, 96, 132, 143 |
| abstract_inverted_index.use | 61 |
| abstract_inverted_index.also | 10 |
| abstract_inverted_index.data | 67 |
| abstract_inverted_index.fMRI | 66 |
| abstract_inverted_index.find | 74 |
| abstract_inverted_index.from | 68, 91 |
| abstract_inverted_index.more | 107 |
| abstract_inverted_index.only | 5 |
| abstract_inverted_index.that | 75 |
| abstract_inverted_index.this | 44 |
| abstract_inverted_index.with | 14, 95, 112 |
| abstract_inverted_index.(XAI) | 41 |
| abstract_inverted_index.LLMs' | 27, 57 |
| abstract_inverted_index.Large | 0 |
| abstract_inverted_index.These | 125 |
| abstract_inverted_index.While | 20 |
| abstract_inverted_index.XAI's | 128 |
| abstract_inverted_index.align | 94 |
| abstract_inverted_index.basis | 134 |
| abstract_inverted_index.brain | 80, 123, 139 |
| abstract_inverted_index.early | 92 |
| abstract_inverted_index.later | 103 |
| abstract_inverted_index.link. | 45 |
| abstract_inverted_index.novel | 36 |
| abstract_inverted_index.prior | 21 |
| abstract_inverted_index.share | 11 |
| abstract_inverted_index.these | 62 |
| abstract_inverted_index.using | 38 |
| abstract_inverted_index.while | 102 |
| abstract_inverted_index.words | 55 |
| abstract_inverted_index.(LLMs) | 3 |
| abstract_inverted_index.across | 82 |
| abstract_inverted_index.higher | 119 |
| abstract_inverted_index.layers | 93, 104, 111 |
| abstract_inverted_index.models | 2 |
| abstract_inverted_index.neural | 31, 133 |
| abstract_inverted_index.brain's | 16, 97 |
| abstract_inverted_index.exhibit | 6 |
| abstract_inverted_index.focused | 24 |
| abstract_inverted_index.greater | 113 |
| abstract_inverted_index.initial | 98 |
| abstract_inverted_index.mapping | 26 |
| abstract_inverted_index.methods | 77 |
| abstract_inverted_index.predict | 65, 79 |
| abstract_inverted_index.propose | 34 |
| abstract_inverted_index.results | 126 |
| abstract_inverted_index.stages, | 101 |
| abstract_inverted_index.stages. | 109 |
| abstract_inverted_index.suggest | 138 |
| abstract_inverted_index.Applying | 46 |
| abstract_inverted_index.activity | 81 |
| abstract_inverted_index.advanced | 108 |
| abstract_inverted_index.approach | 37 |
| abstract_inverted_index.internal | 28 |
| abstract_inverted_index.language | 1, 17, 84, 99, 136 |
| abstract_inverted_index.methods, | 48 |
| abstract_inverted_index.methods. | 148 |
| abstract_inverted_index.network, | 85 |
| abstract_inverted_index.pattern: | 89 |
| abstract_inverted_index.quantify | 50 |
| abstract_inverted_index.research | 22 |
| abstract_inverted_index.robustly | 78 |
| abstract_inverted_index.stronger | 122 |
| abstract_inverted_index.activity, | 32 |
| abstract_inverted_index.alignment | 140 |
| abstract_inverted_index.assessing | 142 |
| abstract_inverted_index.exploring | 131 |
| abstract_inverted_index.influence | 52, 114 |
| abstract_inverted_index.listening | 70 |
| abstract_inverted_index.next-word | 58, 116 |
| abstract_inverted_index.potential | 129 |
| abstract_inverted_index.preceding | 54 |
| abstract_inverted_index.revealing | 86 |
| abstract_inverted_index.alignment. | 124 |
| abstract_inverted_index.biological | 144 |
| abstract_inverted_index.correspond | 105 |
| abstract_inverted_index.human-like | 7 |
| abstract_inverted_index.principles | 13 |
| abstract_inverted_index.processing | 18, 100 |
| abstract_inverted_index.strengthen | 43 |
| abstract_inverted_index.underscore | 127 |
| abstract_inverted_index.attribution | 47, 76, 120 |
| abstract_inverted_index.explainable | 39 |
| abstract_inverted_index.explanation | 147 |
| abstract_inverted_index.mechanisms. | 19 |
| abstract_inverted_index.narratives. | 72 |
| abstract_inverted_index.performance | 8 |
| abstract_inverted_index.predictions | 59 |
| abstract_inverted_index.explanations | 63, 90 |
| abstract_inverted_index.hierarchical | 88 |
| abstract_inverted_index.participants | 69 |
| abstract_inverted_index.plausibility | 145 |
| abstract_inverted_index.Additionally, | 110 |
| abstract_inverted_index.computational | 12 |
| abstract_inverted_index.representations | 29 |
| abstract_inverted_index.scores$\unicode{x2014}$demonstrate | 121 |
| abstract_inverted_index.prediction$\unicode{x2014}$reflected | 117 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |