Explicit Regularisation in Gaussian Noise Injections Article Swipe
Alexander Camuto
,
Matthew Willetts
,
Umut Şimşekli
,
Stephen Roberts
,
Chris Holmes
·
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2007.07368
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2007.07368
We study the regularisation induced in neural networks by Gaussian noise injections (GNIs). Though such injections have been extensively studied when applied to data, there have been few studies on understanding the regularising effect they induce when applied to network activations. Here we derive the explicit regulariser of GNIs, obtained by marginalising out the injected noise, and show that it penalises functions with high-frequency components in the Fourier domain; particularly in layers closer to a neural network's output. We show analytically and empirically that such regularisation produces calibrated classifiers with large classification margins.
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2007.07368
- https://arxiv.org/pdf/2007.07368
- OA Status
- green
- Cited By
- 35
- References
- 48
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3042925324
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3042925324Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2007.07368Digital Object Identifier
- Title
-
Explicit Regularisation in Gaussian Noise InjectionsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-07-14Full publication date if available
- Authors
-
Alexander Camuto, Matthew Willetts, Umut Şimşekli, Stephen Roberts, Chris HolmesList of authors in order
- Landing page
-
https://arxiv.org/abs/2007.07368Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2007.07368Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2007.07368Direct OA link when available
- Concepts
-
Noise (video), Gaussian noise, Gaussian, Mathematics, Psychology, Computer science, Medicine, Artificial intelligence, Algorithm, Physics, Image (mathematics), Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
35Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 9, 2024: 7, 2023: 10, 2022: 4, 2021: 4Per-year citation counts (last 5 years)
- References (count)
-
48Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3042925324 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2007.07368 |
| ids.doi | https://doi.org/10.48550/arxiv.2007.07368 |
| ids.mag | 3042925324 |
| ids.openalex | https://openalex.org/W3042925324 |
| fwci | 3.54773472 |
| type | preprint |
| title | Explicit Regularisation in Gaussian Noise Injections |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10500 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | Sparse and Compressive Sensing Techniques |
| topics[1].id | https://openalex.org/T10688 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9983999729156494 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image and Signal Denoising Methods |
| topics[2].id | https://openalex.org/T12814 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.996999979019165 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Gaussian Processes and Bayesian Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C99498987 |
| concepts[0].level | 3 |
| concepts[0].score | 0.5535465478897095 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[0].display_name | Noise (video) |
| concepts[1].id | https://openalex.org/C4199805 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4851142168045044 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2725903 |
| concepts[1].display_name | Gaussian noise |
| concepts[2].id | https://openalex.org/C163716315 |
| concepts[2].level | 2 |
| concepts[2].score | 0.43367812037467957 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[2].display_name | Gaussian |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.37364012002944946 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C15744967 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3528001606464386 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[4].display_name | Psychology |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.34416162967681885 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C71924100 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3255902826786041 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[6].display_name | Medicine |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.21080422401428223 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.20586362481117249 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.18706974387168884 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C115961682 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[10].display_name | Image (mathematics) |
| concepts[11].id | https://openalex.org/C62520636 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[11].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/noise |
| keywords[0].score | 0.5535465478897095 |
| keywords[0].display_name | Noise (video) |
| keywords[1].id | https://openalex.org/keywords/gaussian-noise |
| keywords[1].score | 0.4851142168045044 |
| keywords[1].display_name | Gaussian noise |
| keywords[2].id | https://openalex.org/keywords/gaussian |
| keywords[2].score | 0.43367812037467957 |
| keywords[2].display_name | Gaussian |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.37364012002944946 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/psychology |
| keywords[4].score | 0.3528001606464386 |
| keywords[4].display_name | Psychology |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.34416162967681885 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/medicine |
| keywords[6].score | 0.3255902826786041 |
| keywords[6].display_name | Medicine |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.21080422401428223 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.20586362481117249 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.18706974387168884 |
| keywords[9].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2007.07368 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2007.07368 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2007.07368 |
| locations[1].id | doi:10.48550/arxiv.2007.07368 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2007.07368 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5075596560 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Alexander Camuto |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alexander Camuto |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5019067441 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6585-3950 |
| authorships[1].author.display_name | Matthew Willetts |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Matthew Willetts |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5053326908 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Umut Şimşekli |
| authorships[2].countries | BE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2802330208 |
| authorships[2].affiliations[0].raw_affiliation_string | Signal, Statistique et Apprentissage |
| authorships[2].affiliations[1].raw_affiliation_string | Institut Polytechnique de Paris |
| authorships[2].affiliations[2].raw_affiliation_string | Département Images, Données, Signal |
| authorships[2].institutions[0].id | https://openalex.org/I2802330208 |
| authorships[2].institutions[0].ror | https://ror.org/0246a9012 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I2802330208, https://openalex.org/I4210095879 |
| authorships[2].institutions[0].country_code | BE |
| authorships[2].institutions[0].display_name | Statistics Belgium |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Umut Şimşekli |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Département Images, Données, Signal, Institut Polytechnique de Paris, Signal, Statistique et Apprentissage |
| authorships[3].author.id | https://openalex.org/A5044000346 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6730-3108 |
| authorships[3].author.display_name | Stephen Roberts |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Stephen Roberts |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5090278748 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4532-3009 |
| authorships[4].author.display_name | Chris Holmes |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Chris Holmes |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2007.07368 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Explicit Regularisation in Gaussian Noise Injections |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10500 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | Sparse and Compressive Sensing Techniques |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W4391375266, https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W1970319972, https://openalex.org/W2572355887, https://openalex.org/W2953254336, https://openalex.org/W2112030392 |
| cited_by_count | 35 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 9 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 10 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 4 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 4 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2007.07368 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2007.07368 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2007.07368 |
| primary_location.id | pmh:oai:arXiv.org:2007.07368 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2007.07368 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2007.07368 |
| publication_date | 2020-07-14 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2962857907, https://openalex.org/W2962702169, https://openalex.org/W2753482910, https://openalex.org/W1519506695, https://openalex.org/W2963724148, https://openalex.org/W2626325961, https://openalex.org/W2152722485, https://openalex.org/W2897097528, https://openalex.org/W2071935776, https://openalex.org/W3007325053, https://openalex.org/W2963959597, https://openalex.org/W2963545688, https://openalex.org/W2962734330, https://openalex.org/W3092390915, https://openalex.org/W2964153729, https://openalex.org/W1988115241, https://openalex.org/W2146596719, https://openalex.org/W2047278710, https://openalex.org/W2254249950, https://openalex.org/W2023943903, https://openalex.org/W2098824882, https://openalex.org/W2111406701, https://openalex.org/W2800112096, https://openalex.org/W2971043187, https://openalex.org/W2809090039, https://openalex.org/W2964212410, https://openalex.org/W3137695714, https://openalex.org/W2149846618, https://openalex.org/W2529714286, https://openalex.org/W3105541982, https://openalex.org/W2952204734, https://openalex.org/W2768267830, https://openalex.org/W2605372163, https://openalex.org/W2911634294, https://openalex.org/W2044618041, https://openalex.org/W2095705004, https://openalex.org/W2996326647, https://openalex.org/W2963207607, https://openalex.org/W2962821226, https://openalex.org/W2964088238, https://openalex.org/W2891262038, https://openalex.org/W2962781217, https://openalex.org/W2963739978, https://openalex.org/W2996271040, https://openalex.org/W1862031973, https://openalex.org/W1826234144, https://openalex.org/W1599263113, https://openalex.org/W2243397390 |
| referenced_works_count | 48 |
| abstract_inverted_index.a | 74 |
| abstract_inverted_index.We | 0, 78 |
| abstract_inverted_index.by | 8, 50 |
| abstract_inverted_index.in | 5, 65, 70 |
| abstract_inverted_index.it | 59 |
| abstract_inverted_index.of | 47 |
| abstract_inverted_index.on | 29 |
| abstract_inverted_index.to | 22, 38, 73 |
| abstract_inverted_index.we | 42 |
| abstract_inverted_index.and | 56, 81 |
| abstract_inverted_index.few | 27 |
| abstract_inverted_index.out | 52 |
| abstract_inverted_index.the | 2, 31, 44, 53, 66 |
| abstract_inverted_index.Here | 41 |
| abstract_inverted_index.been | 17, 26 |
| abstract_inverted_index.have | 16, 25 |
| abstract_inverted_index.show | 57, 79 |
| abstract_inverted_index.such | 14, 84 |
| abstract_inverted_index.that | 58, 83 |
| abstract_inverted_index.they | 34 |
| abstract_inverted_index.when | 20, 36 |
| abstract_inverted_index.with | 62, 89 |
| abstract_inverted_index.GNIs, | 48 |
| abstract_inverted_index.data, | 23 |
| abstract_inverted_index.large | 90 |
| abstract_inverted_index.noise | 10 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.there | 24 |
| abstract_inverted_index.Though | 13 |
| abstract_inverted_index.closer | 72 |
| abstract_inverted_index.derive | 43 |
| abstract_inverted_index.effect | 33 |
| abstract_inverted_index.induce | 35 |
| abstract_inverted_index.layers | 71 |
| abstract_inverted_index.neural | 6, 75 |
| abstract_inverted_index.noise, | 55 |
| abstract_inverted_index.(GNIs). | 12 |
| abstract_inverted_index.Fourier | 67 |
| abstract_inverted_index.applied | 21, 37 |
| abstract_inverted_index.domain; | 68 |
| abstract_inverted_index.induced | 4 |
| abstract_inverted_index.network | 39 |
| abstract_inverted_index.output. | 77 |
| abstract_inverted_index.studied | 19 |
| abstract_inverted_index.studies | 28 |
| abstract_inverted_index.Gaussian | 9 |
| abstract_inverted_index.explicit | 45 |
| abstract_inverted_index.injected | 54 |
| abstract_inverted_index.margins. | 92 |
| abstract_inverted_index.networks | 7 |
| abstract_inverted_index.obtained | 49 |
| abstract_inverted_index.produces | 86 |
| abstract_inverted_index.functions | 61 |
| abstract_inverted_index.network's | 76 |
| abstract_inverted_index.penalises | 60 |
| abstract_inverted_index.calibrated | 87 |
| abstract_inverted_index.components | 64 |
| abstract_inverted_index.injections | 11, 15 |
| abstract_inverted_index.classifiers | 88 |
| abstract_inverted_index.empirically | 82 |
| abstract_inverted_index.extensively | 18 |
| abstract_inverted_index.regulariser | 46 |
| abstract_inverted_index.activations. | 40 |
| abstract_inverted_index.analytically | 80 |
| abstract_inverted_index.particularly | 69 |
| abstract_inverted_index.regularising | 32 |
| abstract_inverted_index.marginalising | 51 |
| abstract_inverted_index.understanding | 30 |
| abstract_inverted_index.classification | 91 |
| abstract_inverted_index.high-frequency | 63 |
| abstract_inverted_index.regularisation | 3, 85 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.93371903 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |