Exploiting graph neural networks to perform finite-difference time-domain based optical simulations Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1063/5.0139004
Having an artificial neural network that solves Maxwell’s equations in a general setting is an intellectual challenge and a great utility. Recently, there have been multiple successful attempts to use artificial neural networks to predict electromagnetic fields, given a specific source and interacting material distribution. However, many of these attempts are limited in domain size and restricted to object shapes similar to the learned ones. Here, we overcome these restrictions by using graph neural networks (GNNs) that adapt the propagation scheme of the finite-difference time-domain (FDTD) method to solve Maxwell’s equations for a distinct time step. GNNs yield a significant advantage, i.e., size invariance, over conventional neural network architectures, such as convolutional or linear neural networks. Once trained, a GNN can work on graphs of arbitrary size and connectivity. This allows us to train them on the propagation procedure of electromagnetic fields on small domain sizes and, finally, expand the domain to an arbitrary scale. Moreover, GNNs can adapt to any material shape and work not only on structured grids, such as FDTD, but also on arbitrary meshes. This work may be seen as the first benchmark for field predictions with graph networks and could be expanded to more complex mesh-based optical simulations, e.g., those based on finite elements.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1063/5.0139004
- https://aip.scitation.org/doi/pdf/10.1063/5.0139004
- OA Status
- gold
- Cited By
- 14
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4320718470
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4320718470Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1063/5.0139004Digital Object Identifier
- Title
-
Exploiting graph neural networks to perform finite-difference time-domain based optical simulationsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-02-14Full publication date if available
- Authors
-
Lukas Kuhn, Taavi Repän, Carsten RockstuhlList of authors in order
- Landing page
-
https://doi.org/10.1063/5.0139004Publisher landing page
- PDF URL
-
https://aip.scitation.org/doi/pdf/10.1063/5.0139004Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://aip.scitation.org/doi/pdf/10.1063/5.0139004Direct OA link when available
- Concepts
-
Finite-difference time-domain method, Polygon mesh, Computer science, Artificial neural network, Electromagnetic field, Convolutional neural network, Domain (mathematical analysis), Theoretical computer science, Maxwell's equations, Benchmark (surveying), Algorithm, Electromagnetism, Artificial intelligence, Mathematics, Mathematical analysis, Physics, Optics, Computer graphics (images), Quantum mechanics, Geography, GeodesyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
14Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 6, 2023: 4Per-year citation counts (last 5 years)
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4320718470 |
|---|---|
| doi | https://doi.org/10.1063/5.0139004 |
| ids.doi | https://doi.org/10.1063/5.0139004 |
| ids.openalex | https://openalex.org/W4320718470 |
| fwci | 3.21980579 |
| type | article |
| title | Exploiting graph neural networks to perform finite-difference time-domain based optical simulations |
| awards[0].id | https://openalex.org/G1933397529 |
| awards[0].funder_id | https://openalex.org/F4320320879 |
| awards[0].display_name | |
| awards[0].funder_award_id | 390761711 |
| awards[0].funder_display_name | Deutsche Forschungsgemeinschaft |
| awards[1].id | https://openalex.org/G4176246014 |
| awards[1].funder_id | https://openalex.org/F4320321090 |
| awards[1].display_name | |
| awards[1].funder_award_id | PSG716 |
| awards[1].funder_display_name | Eesti Teadusagentuur |
| biblio.issue | 3 |
| biblio.volume | 8 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10666 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9984999895095825 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3107 |
| topics[0].subfield.display_name | Atomic and Molecular Physics, and Optics |
| topics[0].display_name | Photonic Crystals and Applications |
| topics[1].id | https://openalex.org/T10299 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.989799976348877 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Photonic and Optical Devices |
| topics[2].id | https://openalex.org/T12611 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9896000027656555 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Neural Networks and Reservoir Computing |
| funders[0].id | https://openalex.org/F4320320879 |
| funders[0].ror | https://ror.org/018mejw64 |
| funders[0].display_name | Deutsche Forschungsgemeinschaft |
| funders[1].id | https://openalex.org/F4320321090 |
| funders[1].ror | https://ror.org/00jjeja18 |
| funders[1].display_name | Eesti Teadusagentuur |
| is_xpac | False |
| apc_list.value | 2750 |
| apc_list.currency | USD |
| apc_list.value_usd | 2750 |
| apc_paid.value | 2750 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2750 |
| concepts[0].id | https://openalex.org/C184880428 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8111660480499268 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1417308 |
| concepts[0].display_name | Finite-difference time-domain method |
| concepts[1].id | https://openalex.org/C31487907 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6932355165481567 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1154597 |
| concepts[1].display_name | Polygon mesh |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6633005738258362 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6180624961853027 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C28843909 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4733056128025055 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q177625 |
| concepts[4].display_name | Electromagnetic field |
| concepts[5].id | https://openalex.org/C81363708 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46985021233558655 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[5].display_name | Convolutional neural network |
| concepts[6].id | https://openalex.org/C36503486 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46654367446899414 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[6].display_name | Domain (mathematical analysis) |
| concepts[7].id | https://openalex.org/C80444323 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4510180950164795 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[7].display_name | Theoretical computer science |
| concepts[8].id | https://openalex.org/C59282198 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4484427869319916 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q51501 |
| concepts[8].display_name | Maxwell's equations |
| concepts[9].id | https://openalex.org/C185798385 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43213406205177307 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[9].display_name | Benchmark (surveying) |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4195701479911804 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C91748784 |
| concepts[11].level | 2 |
| concepts[11].score | 0.41275644302368164 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11406 |
| concepts[11].display_name | Electromagnetism |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2826673984527588 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.2657155990600586 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C134306372 |
| concepts[14].level | 1 |
| concepts[14].score | 0.14738884568214417 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[14].display_name | Mathematical analysis |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.12211072444915771 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C120665830 |
| concepts[16].level | 1 |
| concepts[16].score | 0.08386832475662231 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[16].display_name | Optics |
| concepts[17].id | https://openalex.org/C121684516 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7600677 |
| concepts[17].display_name | Computer graphics (images) |
| concepts[18].id | https://openalex.org/C62520636 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[18].display_name | Quantum mechanics |
| concepts[19].id | https://openalex.org/C205649164 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[19].display_name | Geography |
| concepts[20].id | https://openalex.org/C13280743 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[20].display_name | Geodesy |
| keywords[0].id | https://openalex.org/keywords/finite-difference-time-domain-method |
| keywords[0].score | 0.8111660480499268 |
| keywords[0].display_name | Finite-difference time-domain method |
| keywords[1].id | https://openalex.org/keywords/polygon-mesh |
| keywords[1].score | 0.6932355165481567 |
| keywords[1].display_name | Polygon mesh |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6633005738258362 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.6180624961853027 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/electromagnetic-field |
| keywords[4].score | 0.4733056128025055 |
| keywords[4].display_name | Electromagnetic field |
| keywords[5].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[5].score | 0.46985021233558655 |
| keywords[5].display_name | Convolutional neural network |
| keywords[6].id | https://openalex.org/keywords/domain |
| keywords[6].score | 0.46654367446899414 |
| keywords[6].display_name | Domain (mathematical analysis) |
| keywords[7].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[7].score | 0.4510180950164795 |
| keywords[7].display_name | Theoretical computer science |
| keywords[8].id | https://openalex.org/keywords/maxwells-equations |
| keywords[8].score | 0.4484427869319916 |
| keywords[8].display_name | Maxwell's equations |
| keywords[9].id | https://openalex.org/keywords/benchmark |
| keywords[9].score | 0.43213406205177307 |
| keywords[9].display_name | Benchmark (surveying) |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.4195701479911804 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/electromagnetism |
| keywords[11].score | 0.41275644302368164 |
| keywords[11].display_name | Electromagnetism |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.2826673984527588 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.2657155990600586 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[14].score | 0.14738884568214417 |
| keywords[14].display_name | Mathematical analysis |
| keywords[15].id | https://openalex.org/keywords/physics |
| keywords[15].score | 0.12211072444915771 |
| keywords[15].display_name | Physics |
| keywords[16].id | https://openalex.org/keywords/optics |
| keywords[16].score | 0.08386832475662231 |
| keywords[16].display_name | Optics |
| language | en |
| locations[0].id | doi:10.1063/5.0139004 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210226744 |
| locations[0].source.issn | 2378-0967 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2378-0967 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | APL Photonics |
| locations[0].source.host_organization | https://openalex.org/P4310320061 |
| locations[0].source.host_organization_name | AIP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320061, https://openalex.org/P4310320257 |
| locations[0].source.host_organization_lineage_names | AIP Publishing, American Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://aip.scitation.org/doi/pdf/10.1063/5.0139004 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | APL Photonics |
| locations[0].landing_page_url | https://doi.org/10.1063/5.0139004 |
| locations[1].id | pmh:oai:doaj.org/article:f306896336c14a4081a83af1907b1d4c |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | APL Photonics, Vol 8, Iss 3, Pp 036109-036109-8 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/f306896336c14a4081a83af1907b1d4c |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5000165562 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5977-0822 |
| authorships[0].author.display_name | Lukas Kuhn |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I102335020 |
| authorships[0].affiliations[0].raw_affiliation_string | Steinbuch Centre for Computing—Scientific Computing and Mathematics, Karlsruhe Institute of Technology 1 , Karlsruhe, Germany |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I102335020 |
| authorships[0].affiliations[1].raw_affiliation_string | Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology 2 , Karlsruhe, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I102335020 |
| authorships[0].institutions[0].ror | https://ror.org/04t3en479 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I102335020, https://openalex.org/I1305996414 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Karlsruhe Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | L. Kuhn |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology 2 , Karlsruhe, Germany, Steinbuch Centre for Computing—Scientific Computing and Mathematics, Karlsruhe Institute of Technology 1 , Karlsruhe, Germany |
| authorships[1].author.id | https://openalex.org/A5013567492 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6596-2022 |
| authorships[1].author.display_name | Taavi Repän |
| authorships[1].countries | EE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I56085075 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Physics, University of Tartu 3 , Tartu, Estonia |
| authorships[1].institutions[0].id | https://openalex.org/I56085075 |
| authorships[1].institutions[0].ror | https://ror.org/03z77qz90 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I56085075 |
| authorships[1].institutions[0].country_code | EE |
| authorships[1].institutions[0].display_name | University of Tartu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | T. Repän |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute of Physics, University of Tartu 3 , Tartu, Estonia |
| authorships[2].author.id | https://openalex.org/A5054748851 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5868-0526 |
| authorships[2].author.display_name | Carsten Rockstuhl |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I102335020 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology 2 , Karlsruhe, Germany |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I102335020 |
| authorships[2].affiliations[1].raw_affiliation_string | Institute of Nanotechnology, Karlsruhe Institute of Technology 4 , Karlsruhe, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I102335020 |
| authorships[2].institutions[0].ror | https://ror.org/04t3en479 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I102335020, https://openalex.org/I1305996414 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Karlsruhe Institute of Technology |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | C. Rockstuhl |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Institute of Nanotechnology, Karlsruhe Institute of Technology 4 , Karlsruhe, Germany, Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology 2 , Karlsruhe, Germany |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://aip.scitation.org/doi/pdf/10.1063/5.0139004 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Exploiting graph neural networks to perform finite-difference time-domain based optical simulations |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10666 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9984999895095825 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3107 |
| primary_topic.subfield.display_name | Atomic and Molecular Physics, and Optics |
| primary_topic.display_name | Photonic Crystals and Applications |
| related_works | https://openalex.org/W2800478078, https://openalex.org/W2776710942, https://openalex.org/W2154173349, https://openalex.org/W2154653230, https://openalex.org/W215960815, https://openalex.org/W4220980298, https://openalex.org/W2025581651, https://openalex.org/W1524690628, https://openalex.org/W625343785, https://openalex.org/W2349092258 |
| cited_by_count | 14 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1063/5.0139004 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210226744 |
| best_oa_location.source.issn | 2378-0967 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2378-0967 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | APL Photonics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320061 |
| best_oa_location.source.host_organization_name | AIP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320061, https://openalex.org/P4310320257 |
| best_oa_location.source.host_organization_lineage_names | AIP Publishing, American Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://aip.scitation.org/doi/pdf/10.1063/5.0139004 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | APL Photonics |
| best_oa_location.landing_page_url | https://doi.org/10.1063/5.0139004 |
| primary_location.id | doi:10.1063/5.0139004 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210226744 |
| primary_location.source.issn | 2378-0967 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2378-0967 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | APL Photonics |
| primary_location.source.host_organization | https://openalex.org/P4310320061 |
| primary_location.source.host_organization_name | AIP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320061, https://openalex.org/P4310320257 |
| primary_location.source.host_organization_lineage_names | AIP Publishing, American Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://aip.scitation.org/doi/pdf/10.1063/5.0139004 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | APL Photonics |
| primary_location.landing_page_url | https://doi.org/10.1063/5.0139004 |
| publication_date | 2023-02-14 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2044684119, https://openalex.org/W2586727320, https://openalex.org/W2114268388, https://openalex.org/W2266290075, https://openalex.org/W2613358869, https://openalex.org/W145066576, https://openalex.org/W2083005654, https://openalex.org/W1975012596, https://openalex.org/W4206174319, https://openalex.org/W3092323705, https://openalex.org/W3095606665, https://openalex.org/W3197633179, https://openalex.org/W3094241042, https://openalex.org/W3109834426, https://openalex.org/W3008967825, https://openalex.org/W4308545157, https://openalex.org/W2916134072, https://openalex.org/W4220688644, https://openalex.org/W2910298034, https://openalex.org/W4225667808, https://openalex.org/W3110901318, https://openalex.org/W3034231628, https://openalex.org/W3092228416, https://openalex.org/W4320167334, https://openalex.org/W3013398575, https://openalex.org/W3045164669, https://openalex.org/W3010501116, https://openalex.org/W3036157773, https://openalex.org/W3194436063, https://openalex.org/W2338249707, https://openalex.org/W2133865602, https://openalex.org/W1522301498, https://openalex.org/W4292664320, https://openalex.org/W2998004632, https://openalex.org/W3129005144, https://openalex.org/W3209244307, https://openalex.org/W3100624994, https://openalex.org/W3101073376, https://openalex.org/W3128539297 |
| referenced_works_count | 39 |
| abstract_inverted_index.a | 10, 18, 38, 92, 98, 118 |
| abstract_inverted_index.an | 1, 14, 152 |
| abstract_inverted_index.as | 110, 171, 183 |
| abstract_inverted_index.be | 181, 195 |
| abstract_inverted_index.by | 70 |
| abstract_inverted_index.in | 9, 52 |
| abstract_inverted_index.is | 13 |
| abstract_inverted_index.of | 47, 81, 124, 139 |
| abstract_inverted_index.on | 122, 135, 142, 167, 175, 206 |
| abstract_inverted_index.or | 112 |
| abstract_inverted_index.to | 28, 33, 57, 61, 87, 132, 151, 159, 197 |
| abstract_inverted_index.us | 131 |
| abstract_inverted_index.we | 66 |
| abstract_inverted_index.GNN | 119 |
| abstract_inverted_index.and | 17, 41, 55, 127, 163, 193 |
| abstract_inverted_index.any | 160 |
| abstract_inverted_index.are | 50 |
| abstract_inverted_index.but | 173 |
| abstract_inverted_index.can | 120, 157 |
| abstract_inverted_index.for | 91, 187 |
| abstract_inverted_index.may | 180 |
| abstract_inverted_index.not | 165 |
| abstract_inverted_index.the | 62, 78, 82, 136, 149, 184 |
| abstract_inverted_index.use | 29 |
| abstract_inverted_index.GNNs | 96, 156 |
| abstract_inverted_index.Once | 116 |
| abstract_inverted_index.This | 129, 178 |
| abstract_inverted_index.also | 174 |
| abstract_inverted_index.and, | 146 |
| abstract_inverted_index.been | 24 |
| abstract_inverted_index.have | 23 |
| abstract_inverted_index.many | 46 |
| abstract_inverted_index.more | 198 |
| abstract_inverted_index.only | 166 |
| abstract_inverted_index.over | 104 |
| abstract_inverted_index.seen | 182 |
| abstract_inverted_index.size | 54, 102, 126 |
| abstract_inverted_index.such | 109, 170 |
| abstract_inverted_index.that | 5, 76 |
| abstract_inverted_index.them | 134 |
| abstract_inverted_index.time | 94 |
| abstract_inverted_index.with | 190 |
| abstract_inverted_index.work | 121, 164, 179 |
| abstract_inverted_index.FDTD, | 172 |
| abstract_inverted_index.Here, | 65 |
| abstract_inverted_index.adapt | 77, 158 |
| abstract_inverted_index.based | 205 |
| abstract_inverted_index.could | 194 |
| abstract_inverted_index.e.g., | 203 |
| abstract_inverted_index.field | 188 |
| abstract_inverted_index.first | 185 |
| abstract_inverted_index.given | 37 |
| abstract_inverted_index.graph | 72, 191 |
| abstract_inverted_index.great | 19 |
| abstract_inverted_index.i.e., | 101 |
| abstract_inverted_index.ones. | 64 |
| abstract_inverted_index.shape | 162 |
| abstract_inverted_index.sizes | 145 |
| abstract_inverted_index.small | 143 |
| abstract_inverted_index.solve | 88 |
| abstract_inverted_index.step. | 95 |
| abstract_inverted_index.there | 22 |
| abstract_inverted_index.these | 48, 68 |
| abstract_inverted_index.those | 204 |
| abstract_inverted_index.train | 133 |
| abstract_inverted_index.using | 71 |
| abstract_inverted_index.yield | 97 |
| abstract_inverted_index.(FDTD) | 85 |
| abstract_inverted_index.(GNNs) | 75 |
| abstract_inverted_index.Having | 0 |
| abstract_inverted_index.allows | 130 |
| abstract_inverted_index.domain | 53, 144, 150 |
| abstract_inverted_index.expand | 148 |
| abstract_inverted_index.fields | 141 |
| abstract_inverted_index.finite | 207 |
| abstract_inverted_index.graphs | 123 |
| abstract_inverted_index.grids, | 169 |
| abstract_inverted_index.linear | 113 |
| abstract_inverted_index.method | 86 |
| abstract_inverted_index.neural | 3, 31, 73, 106, 114 |
| abstract_inverted_index.object | 58 |
| abstract_inverted_index.scale. | 154 |
| abstract_inverted_index.scheme | 80 |
| abstract_inverted_index.shapes | 59 |
| abstract_inverted_index.solves | 6 |
| abstract_inverted_index.source | 40 |
| abstract_inverted_index.complex | 199 |
| abstract_inverted_index.fields, | 36 |
| abstract_inverted_index.general | 11 |
| abstract_inverted_index.learned | 63 |
| abstract_inverted_index.limited | 51 |
| abstract_inverted_index.meshes. | 177 |
| abstract_inverted_index.network | 4, 107 |
| abstract_inverted_index.optical | 201 |
| abstract_inverted_index.predict | 34 |
| abstract_inverted_index.setting | 12 |
| abstract_inverted_index.similar | 60 |
| abstract_inverted_index.However, | 45 |
| abstract_inverted_index.attempts | 27, 49 |
| abstract_inverted_index.distinct | 93 |
| abstract_inverted_index.expanded | 196 |
| abstract_inverted_index.finally, | 147 |
| abstract_inverted_index.material | 43, 161 |
| abstract_inverted_index.multiple | 25 |
| abstract_inverted_index.networks | 32, 74, 192 |
| abstract_inverted_index.overcome | 67 |
| abstract_inverted_index.specific | 39 |
| abstract_inverted_index.trained, | 117 |
| abstract_inverted_index.utility. | 20 |
| abstract_inverted_index.Moreover, | 155 |
| abstract_inverted_index.Recently, | 21 |
| abstract_inverted_index.arbitrary | 125, 153, 176 |
| abstract_inverted_index.benchmark | 186 |
| abstract_inverted_index.challenge | 16 |
| abstract_inverted_index.elements. | 208 |
| abstract_inverted_index.equations | 8, 90 |
| abstract_inverted_index.networks. | 115 |
| abstract_inverted_index.procedure | 138 |
| abstract_inverted_index.advantage, | 100 |
| abstract_inverted_index.artificial | 2, 30 |
| abstract_inverted_index.mesh-based | 200 |
| abstract_inverted_index.restricted | 56 |
| abstract_inverted_index.structured | 168 |
| abstract_inverted_index.successful | 26 |
| abstract_inverted_index.Maxwell’s | 7, 89 |
| abstract_inverted_index.interacting | 42 |
| abstract_inverted_index.invariance, | 103 |
| abstract_inverted_index.predictions | 189 |
| abstract_inverted_index.propagation | 79, 137 |
| abstract_inverted_index.significant | 99 |
| abstract_inverted_index.time-domain | 84 |
| abstract_inverted_index.conventional | 105 |
| abstract_inverted_index.intellectual | 15 |
| abstract_inverted_index.restrictions | 69 |
| abstract_inverted_index.simulations, | 202 |
| abstract_inverted_index.connectivity. | 128 |
| abstract_inverted_index.convolutional | 111 |
| abstract_inverted_index.distribution. | 44 |
| abstract_inverted_index.architectures, | 108 |
| abstract_inverted_index.electromagnetic | 35, 140 |
| abstract_inverted_index.finite-difference | 83 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5054748851 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I102335020 |
| citation_normalized_percentile.value | 0.92883426 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |