Exploiting Unlabeled Structures through Task Consistency Training for Versatile Medical Image Segmentation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2509.04732
Versatile medical image segmentation (VMIS) targets the segmentation of multiple classes, while obtaining full annotations for all classes is often impractical due to the time and labor required. Leveraging partially labeled datasets (PLDs) presents a promising alternative; however, current VMIS approaches face significant class imbalance due to the unequal category distribution in PLDs. Existing methods attempt to address this by generating pseudo-full labels. Nevertheless, these typically require additional models and often result in potential performance degradation from label noise. In this work, we introduce a Task Consistency Training (TCT) framework to address class imbalance without requiring extra models. TCT includes a backbone network with a main segmentation head (MSH) for multi-channel predictions and multiple auxiliary task heads (ATHs) for task-specific predictions. By enforcing a consistency constraint between the MSH and ATH predictions, TCT effectively utilizes unlabeled anatomical structures. To avoid error propagation from low-consistency, potentially noisy data, we propose a filtering strategy to exclude such data. Additionally, we introduce a unified auxiliary uncertainty-weighted loss (UAUWL) to mitigate segmentation quality declines caused by the dominance of specific tasks. Extensive experiments on eight abdominal datasets from diverse clinical sites demonstrate our approach's effectiveness.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2509.04732
- https://arxiv.org/pdf/2509.04732
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414759608
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414759608Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2509.04732Digital Object Identifier
- Title
-
Exploiting Unlabeled Structures through Task Consistency Training for Versatile Medical Image SegmentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-05Full publication date if available
- Authors
-
Shengqian Zhu, Jiafei Wu, Xiaogang Xu, Chengrong Yu, Ying Song, Yi Zhang, Guangjun Li, Junjie HuList of authors in order
- Landing page
-
https://arxiv.org/abs/2509.04732Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2509.04732Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2509.04732Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414759608 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2509.04732 |
| ids.doi | https://doi.org/10.48550/arxiv.2509.04732 |
| ids.openalex | https://openalex.org/W4414759608 |
| fwci | |
| type | preprint |
| title | Exploiting Unlabeled Structures through Task Consistency Training for Versatile Medical Image Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12535 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8712999820709229 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning and Data Classification |
| topics[1].id | https://openalex.org/T11775 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.7778000235557556 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | COVID-19 diagnosis using AI |
| topics[2].id | https://openalex.org/T12072 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.7689999938011169 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2509.04732 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2509.04732 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2509.04732 |
| locations[1].id | doi:10.48550/arxiv.2509.04732 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2509.04732 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5028231055 |
| authorships[0].author.orcid | https://orcid.org/0009-0000-4159-531X |
| authorships[0].author.display_name | Shengqian Zhu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhu, Shengqian |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5022066800 |
| authorships[1].author.orcid | https://orcid.org/0009-0001-8125-1586 |
| authorships[1].author.display_name | Jiafei Wu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wu, Jiafei |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5032067104 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7928-7336 |
| authorships[2].author.display_name | Xiaogang Xu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xu, Xiaogang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5085472508 |
| authorships[3].author.orcid | https://orcid.org/0009-0004-1238-7414 |
| authorships[3].author.display_name | Chengrong Yu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yu, Chengrong |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100631945 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7217-3192 |
| authorships[4].author.display_name | Ying Song |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Song, Ying |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101926151 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0523-3877 |
| authorships[5].author.display_name | Yi Zhang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yi, Zhang |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5050053624 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2054-1771 |
| authorships[6].author.display_name | Guangjun Li |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Li, Guangjun |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5085263462 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-1911-4361 |
| authorships[7].author.display_name | Junjie Hu |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Hu, Junjie |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2509.04732 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Exploiting Unlabeled Structures through Task Consistency Training for Versatile Medical Image Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12535 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8712999820709229 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning and Data Classification |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2509.04732 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2509.04732 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2509.04732 |
| primary_location.id | pmh:oai:arXiv.org:2509.04732 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2509.04732 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2509.04732 |
| publication_date | 2025-09-05 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 34, 84, 100, 104, 123, 149, 159 |
| abstract_inverted_index.By | 121 |
| abstract_inverted_index.In | 79 |
| abstract_inverted_index.To | 138 |
| abstract_inverted_index.by | 59, 171 |
| abstract_inverted_index.in | 51, 72 |
| abstract_inverted_index.is | 18 |
| abstract_inverted_index.of | 8, 174 |
| abstract_inverted_index.on | 179 |
| abstract_inverted_index.to | 22, 46, 56, 90, 152, 165 |
| abstract_inverted_index.we | 82, 147, 157 |
| abstract_inverted_index.ATH | 130 |
| abstract_inverted_index.MSH | 128 |
| abstract_inverted_index.TCT | 98, 132 |
| abstract_inverted_index.all | 16 |
| abstract_inverted_index.and | 25, 69, 112, 129 |
| abstract_inverted_index.due | 21, 45 |
| abstract_inverted_index.for | 15, 109, 118 |
| abstract_inverted_index.our | 188 |
| abstract_inverted_index.the | 6, 23, 47, 127, 172 |
| abstract_inverted_index.Task | 85 |
| abstract_inverted_index.VMIS | 39 |
| abstract_inverted_index.face | 41 |
| abstract_inverted_index.from | 76, 142, 183 |
| abstract_inverted_index.full | 13 |
| abstract_inverted_index.head | 107 |
| abstract_inverted_index.loss | 163 |
| abstract_inverted_index.main | 105 |
| abstract_inverted_index.such | 154 |
| abstract_inverted_index.task | 115 |
| abstract_inverted_index.this | 58, 80 |
| abstract_inverted_index.time | 24 |
| abstract_inverted_index.with | 103 |
| abstract_inverted_index.(MSH) | 108 |
| abstract_inverted_index.(TCT) | 88 |
| abstract_inverted_index.PLDs. | 52 |
| abstract_inverted_index.avoid | 139 |
| abstract_inverted_index.class | 43, 92 |
| abstract_inverted_index.data, | 146 |
| abstract_inverted_index.data. | 155 |
| abstract_inverted_index.eight | 180 |
| abstract_inverted_index.error | 140 |
| abstract_inverted_index.extra | 96 |
| abstract_inverted_index.heads | 116 |
| abstract_inverted_index.image | 2 |
| abstract_inverted_index.label | 77 |
| abstract_inverted_index.labor | 26 |
| abstract_inverted_index.noisy | 145 |
| abstract_inverted_index.often | 19, 70 |
| abstract_inverted_index.sites | 186 |
| abstract_inverted_index.these | 64 |
| abstract_inverted_index.while | 11 |
| abstract_inverted_index.work, | 81 |
| abstract_inverted_index.(ATHs) | 117 |
| abstract_inverted_index.(PLDs) | 32 |
| abstract_inverted_index.(VMIS) | 4 |
| abstract_inverted_index.caused | 170 |
| abstract_inverted_index.models | 68 |
| abstract_inverted_index.noise. | 78 |
| abstract_inverted_index.result | 71 |
| abstract_inverted_index.tasks. | 176 |
| abstract_inverted_index.(UAUWL) | 164 |
| abstract_inverted_index.address | 57, 91 |
| abstract_inverted_index.attempt | 55 |
| abstract_inverted_index.between | 126 |
| abstract_inverted_index.classes | 17 |
| abstract_inverted_index.current | 38 |
| abstract_inverted_index.diverse | 184 |
| abstract_inverted_index.exclude | 153 |
| abstract_inverted_index.labeled | 30 |
| abstract_inverted_index.labels. | 62 |
| abstract_inverted_index.medical | 1 |
| abstract_inverted_index.methods | 54 |
| abstract_inverted_index.models. | 97 |
| abstract_inverted_index.network | 102 |
| abstract_inverted_index.propose | 148 |
| abstract_inverted_index.quality | 168 |
| abstract_inverted_index.require | 66 |
| abstract_inverted_index.targets | 5 |
| abstract_inverted_index.unequal | 48 |
| abstract_inverted_index.unified | 160 |
| abstract_inverted_index.without | 94 |
| abstract_inverted_index.Existing | 53 |
| abstract_inverted_index.Training | 87 |
| abstract_inverted_index.backbone | 101 |
| abstract_inverted_index.category | 49 |
| abstract_inverted_index.classes, | 10 |
| abstract_inverted_index.clinical | 185 |
| abstract_inverted_index.datasets | 31, 182 |
| abstract_inverted_index.declines | 169 |
| abstract_inverted_index.however, | 37 |
| abstract_inverted_index.includes | 99 |
| abstract_inverted_index.mitigate | 166 |
| abstract_inverted_index.multiple | 9, 113 |
| abstract_inverted_index.presents | 33 |
| abstract_inverted_index.specific | 175 |
| abstract_inverted_index.strategy | 151 |
| abstract_inverted_index.utilizes | 134 |
| abstract_inverted_index.Extensive | 177 |
| abstract_inverted_index.Versatile | 0 |
| abstract_inverted_index.abdominal | 181 |
| abstract_inverted_index.auxiliary | 114, 161 |
| abstract_inverted_index.dominance | 173 |
| abstract_inverted_index.enforcing | 122 |
| abstract_inverted_index.filtering | 150 |
| abstract_inverted_index.framework | 89 |
| abstract_inverted_index.imbalance | 44, 93 |
| abstract_inverted_index.introduce | 83, 158 |
| abstract_inverted_index.obtaining | 12 |
| abstract_inverted_index.partially | 29 |
| abstract_inverted_index.potential | 73 |
| abstract_inverted_index.promising | 35 |
| abstract_inverted_index.required. | 27 |
| abstract_inverted_index.requiring | 95 |
| abstract_inverted_index.typically | 65 |
| abstract_inverted_index.unlabeled | 135 |
| abstract_inverted_index.Leveraging | 28 |
| abstract_inverted_index.additional | 67 |
| abstract_inverted_index.anatomical | 136 |
| abstract_inverted_index.approach's | 189 |
| abstract_inverted_index.approaches | 40 |
| abstract_inverted_index.constraint | 125 |
| abstract_inverted_index.generating | 60 |
| abstract_inverted_index.Consistency | 86 |
| abstract_inverted_index.annotations | 14 |
| abstract_inverted_index.consistency | 124 |
| abstract_inverted_index.degradation | 75 |
| abstract_inverted_index.demonstrate | 187 |
| abstract_inverted_index.effectively | 133 |
| abstract_inverted_index.experiments | 178 |
| abstract_inverted_index.impractical | 20 |
| abstract_inverted_index.performance | 74 |
| abstract_inverted_index.potentially | 144 |
| abstract_inverted_index.predictions | 111 |
| abstract_inverted_index.propagation | 141 |
| abstract_inverted_index.pseudo-full | 61 |
| abstract_inverted_index.significant | 42 |
| abstract_inverted_index.structures. | 137 |
| abstract_inverted_index.alternative; | 36 |
| abstract_inverted_index.distribution | 50 |
| abstract_inverted_index.predictions, | 131 |
| abstract_inverted_index.predictions. | 120 |
| abstract_inverted_index.segmentation | 3, 7, 106, 167 |
| abstract_inverted_index.Additionally, | 156 |
| abstract_inverted_index.Nevertheless, | 63 |
| abstract_inverted_index.multi-channel | 110 |
| abstract_inverted_index.task-specific | 119 |
| abstract_inverted_index.effectiveness. | 190 |
| abstract_inverted_index.low-consistency, | 143 |
| abstract_inverted_index.uncertainty-weighted | 162 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |