Exploration of a new reconstructed structure on GaN(0001) surface by Bayesian optimization Article Swipe
Akira Kusaba
,
Yoshihiro Kangawa
,
Tetsuji Kuboyama
,
Atsushi Oshiyama
·
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2110.12642
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2110.12642
GaN(0001) surfaces with Ga- and H-adsorbates are fundamental stages for epitaxial growth of semiconductor thin films. We explore stable surface structures with nanometer scale by the density-functional calculations combined with Bayesian optimization, and succeed to reach a single structure with satisfactorily low mixing enthalpy among hundreds of thousand possible candidate structures. We find that the obtained structure is free from any postulated high symmetry previously introduced by human intuition, satisfies electron counting rule locally, and shows new adsorbate arrangement, reflecting characteristics of nitride semiconductors.
Related Topics
Concepts
Semiconductor
Intuition
Epitaxy
Materials science
Bayesian optimization
Gallium nitride
Bayesian probability
Surface (topology)
Nitride
Optoelectronics
Statistical physics
Condensed matter physics
Nanotechnology
Computer science
Physics
Mathematics
Artificial intelligence
Geometry
Layer (electronics)
Philosophy
Epistemology
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- https://arxiv.org/pdf/2110.12642
- OA Status
- green
- References
- 20
- Related Works
- 19
- OpenAlex ID
- https://openalex.org/W3208408587
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3208408587Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2110.12642Digital Object Identifier
- Title
-
Exploration of a new reconstructed structure on GaN(0001) surface by Bayesian optimizationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-10-25Full publication date if available
- Authors
-
Akira Kusaba, Yoshihiro Kangawa, Tetsuji Kuboyama, Atsushi OshiyamaList of authors in order
- Landing page
-
https://arxiv.org/pdf/2110.12642Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2110.12642Direct OA link when available
- Concepts
-
Semiconductor, Intuition, Epitaxy, Materials science, Bayesian optimization, Gallium nitride, Bayesian probability, Surface (topology), Nitride, Optoelectronics, Statistical physics, Condensed matter physics, Nanotechnology, Computer science, Physics, Mathematics, Artificial intelligence, Geometry, Layer (electronics), Philosophy, EpistemologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
20Number of works referenced by this work
- Related works (count)
-
19Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3208408587 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2110.12642 |
| ids.doi | https://doi.org/10.48550/arxiv.2110.12642 |
| ids.mag | 3208408587 |
| ids.openalex | https://openalex.org/W3208408587 |
| fwci | 0.0 |
| type | preprint |
| title | Exploration of a new reconstructed structure on GaN(0001) surface by Bayesian optimization |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10099 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3104 |
| topics[0].subfield.display_name | Condensed Matter Physics |
| topics[0].display_name | GaN-based semiconductor devices and materials |
| topics[1].id | https://openalex.org/T10022 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9750000238418579 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3107 |
| topics[1].subfield.display_name | Atomic and Molecular Physics, and Optics |
| topics[1].display_name | Semiconductor Quantum Structures and Devices |
| topics[2].id | https://openalex.org/T11948 |
| topics[2].field.id | https://openalex.org/fields/25 |
| topics[2].field.display_name | Materials Science |
| topics[2].score | 0.974399983882904 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2505 |
| topics[2].subfield.display_name | Materials Chemistry |
| topics[2].display_name | Machine Learning in Materials Science |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C108225325 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6298890709877014 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11456 |
| concepts[0].display_name | Semiconductor |
| concepts[1].id | https://openalex.org/C132010649 |
| concepts[1].level | 2 |
| concepts[1].score | 0.592218279838562 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q189222 |
| concepts[1].display_name | Intuition |
| concepts[2].id | https://openalex.org/C110738630 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5610844492912292 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1135540 |
| concepts[2].display_name | Epitaxy |
| concepts[3].id | https://openalex.org/C192562407 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5415944457054138 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[3].display_name | Materials science |
| concepts[4].id | https://openalex.org/C2778049539 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5379418134689331 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17002908 |
| concepts[4].display_name | Bayesian optimization |
| concepts[5].id | https://openalex.org/C2778871202 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4923776388168335 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q411713 |
| concepts[5].display_name | Gallium nitride |
| concepts[6].id | https://openalex.org/C107673813 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48714134097099304 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[6].display_name | Bayesian probability |
| concepts[7].id | https://openalex.org/C2776799497 |
| concepts[7].level | 2 |
| concepts[7].score | 0.43165743350982666 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q484298 |
| concepts[7].display_name | Surface (topology) |
| concepts[8].id | https://openalex.org/C194760766 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4281052350997925 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q410851 |
| concepts[8].display_name | Nitride |
| concepts[9].id | https://openalex.org/C49040817 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3616986870765686 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q193091 |
| concepts[9].display_name | Optoelectronics |
| concepts[10].id | https://openalex.org/C121864883 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3297503888607025 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[10].display_name | Statistical physics |
| concepts[11].id | https://openalex.org/C26873012 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3297010660171509 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q214781 |
| concepts[11].display_name | Condensed matter physics |
| concepts[12].id | https://openalex.org/C171250308 |
| concepts[12].level | 1 |
| concepts[12].score | 0.32835105061531067 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11468 |
| concepts[12].display_name | Nanotechnology |
| concepts[13].id | https://openalex.org/C41008148 |
| concepts[13].level | 0 |
| concepts[13].score | 0.24207770824432373 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[13].display_name | Computer science |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.22213691473007202 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.1882258951663971 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C154945302 |
| concepts[16].level | 1 |
| concepts[16].score | 0.13557550311088562 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[16].display_name | Artificial intelligence |
| concepts[17].id | https://openalex.org/C2524010 |
| concepts[17].level | 1 |
| concepts[17].score | 0.09408825635910034 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[17].display_name | Geometry |
| concepts[18].id | https://openalex.org/C2779227376 |
| concepts[18].level | 2 |
| concepts[18].score | 0.08385306596755981 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q6505497 |
| concepts[18].display_name | Layer (electronics) |
| concepts[19].id | https://openalex.org/C138885662 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[19].display_name | Philosophy |
| concepts[20].id | https://openalex.org/C111472728 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[20].display_name | Epistemology |
| keywords[0].id | https://openalex.org/keywords/semiconductor |
| keywords[0].score | 0.6298890709877014 |
| keywords[0].display_name | Semiconductor |
| keywords[1].id | https://openalex.org/keywords/intuition |
| keywords[1].score | 0.592218279838562 |
| keywords[1].display_name | Intuition |
| keywords[2].id | https://openalex.org/keywords/epitaxy |
| keywords[2].score | 0.5610844492912292 |
| keywords[2].display_name | Epitaxy |
| keywords[3].id | https://openalex.org/keywords/materials-science |
| keywords[3].score | 0.5415944457054138 |
| keywords[3].display_name | Materials science |
| keywords[4].id | https://openalex.org/keywords/bayesian-optimization |
| keywords[4].score | 0.5379418134689331 |
| keywords[4].display_name | Bayesian optimization |
| keywords[5].id | https://openalex.org/keywords/gallium-nitride |
| keywords[5].score | 0.4923776388168335 |
| keywords[5].display_name | Gallium nitride |
| keywords[6].id | https://openalex.org/keywords/bayesian-probability |
| keywords[6].score | 0.48714134097099304 |
| keywords[6].display_name | Bayesian probability |
| keywords[7].id | https://openalex.org/keywords/surface |
| keywords[7].score | 0.43165743350982666 |
| keywords[7].display_name | Surface (topology) |
| keywords[8].id | https://openalex.org/keywords/nitride |
| keywords[8].score | 0.4281052350997925 |
| keywords[8].display_name | Nitride |
| keywords[9].id | https://openalex.org/keywords/optoelectronics |
| keywords[9].score | 0.3616986870765686 |
| keywords[9].display_name | Optoelectronics |
| keywords[10].id | https://openalex.org/keywords/statistical-physics |
| keywords[10].score | 0.3297503888607025 |
| keywords[10].display_name | Statistical physics |
| keywords[11].id | https://openalex.org/keywords/condensed-matter-physics |
| keywords[11].score | 0.3297010660171509 |
| keywords[11].display_name | Condensed matter physics |
| keywords[12].id | https://openalex.org/keywords/nanotechnology |
| keywords[12].score | 0.32835105061531067 |
| keywords[12].display_name | Nanotechnology |
| keywords[13].id | https://openalex.org/keywords/computer-science |
| keywords[13].score | 0.24207770824432373 |
| keywords[13].display_name | Computer science |
| keywords[14].id | https://openalex.org/keywords/physics |
| keywords[14].score | 0.22213691473007202 |
| keywords[14].display_name | Physics |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.1882258951663971 |
| keywords[15].display_name | Mathematics |
| keywords[16].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[16].score | 0.13557550311088562 |
| keywords[16].display_name | Artificial intelligence |
| keywords[17].id | https://openalex.org/keywords/geometry |
| keywords[17].score | 0.09408825635910034 |
| keywords[17].display_name | Geometry |
| keywords[18].id | https://openalex.org/keywords/layer |
| keywords[18].score | 0.08385306596755981 |
| keywords[18].display_name | Layer (electronics) |
| language | en |
| locations[0].id | mag:3208408587 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | arXiv (Cornell University) |
| locations[0].landing_page_url | https://arxiv.org/pdf/2110.12642 |
| locations[1].id | doi:10.48550/arxiv.2110.12642 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2110.12642 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5013799882 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1296-9180 |
| authorships[0].author.display_name | Akira Kusaba |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I135598925 |
| authorships[0].affiliations[0].raw_affiliation_string | Kyushu University |
| authorships[0].institutions[0].id | https://openalex.org/I135598925 |
| authorships[0].institutions[0].ror | https://ror.org/00p4k0j84 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I135598925 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | Kyushu University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Akira Kusaba |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Kyushu University |
| authorships[1].author.id | https://openalex.org/A5021552291 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4982-8883 |
| authorships[1].author.display_name | Yoshihiro Kangawa |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yoshihiro Kangawa |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5028025312 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1590-0231 |
| authorships[2].author.display_name | Tetsuji Kuboyama |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tetsuji Kuboyama |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5084854658 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7279-4124 |
| authorships[3].author.display_name | Atsushi Oshiyama |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Atsushi Oshiyama |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2110.12642 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Exploration of a new reconstructed structure on GaN(0001) surface by Bayesian optimization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10099 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3104 |
| primary_topic.subfield.display_name | Condensed Matter Physics |
| primary_topic.display_name | GaN-based semiconductor devices and materials |
| related_works | https://openalex.org/W2046621683, https://openalex.org/W2008609842, https://openalex.org/W2250026784, https://openalex.org/W2773508593, https://openalex.org/W263469485, https://openalex.org/W1988362331, https://openalex.org/W2062292616, https://openalex.org/W134693750, https://openalex.org/W2088475689, https://openalex.org/W2068760557, https://openalex.org/W1970630890, https://openalex.org/W2412532721, https://openalex.org/W187725541, https://openalex.org/W3155719367, https://openalex.org/W3104524747, https://openalex.org/W2025136035, https://openalex.org/W2088582557, https://openalex.org/W155011596, https://openalex.org/W2262666748 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | mag:3208408587 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | arXiv (Cornell University) |
| best_oa_location.landing_page_url | https://arxiv.org/pdf/2110.12642 |
| primary_location.id | mag:3208408587 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | arXiv (Cornell University) |
| primary_location.landing_page_url | https://arxiv.org/pdf/2110.12642 |
| publication_date | 2021-10-25 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W1965170315, https://openalex.org/W2045596260, https://openalex.org/W2071912610, https://openalex.org/W2969185332, https://openalex.org/W2019410103, https://openalex.org/W1678620623, https://openalex.org/W2007930532, https://openalex.org/W2024060531, https://openalex.org/W2089500378, https://openalex.org/W2028056984, https://openalex.org/W2977321094, https://openalex.org/W2461312660, https://openalex.org/W1995639542, https://openalex.org/W2070059498, https://openalex.org/W1970744096, https://openalex.org/W3099563879, https://openalex.org/W2077633895, https://openalex.org/W2788013722, https://openalex.org/W2051117331, https://openalex.org/W1979877963 |
| referenced_works_count | 20 |
| abstract_inverted_index.a | 36 |
| abstract_inverted_index.We | 16, 51 |
| abstract_inverted_index.by | 24, 66 |
| abstract_inverted_index.is | 57 |
| abstract_inverted_index.of | 12, 46, 81 |
| abstract_inverted_index.to | 34 |
| abstract_inverted_index.Ga- | 3 |
| abstract_inverted_index.and | 4, 32, 74 |
| abstract_inverted_index.any | 60 |
| abstract_inverted_index.are | 6 |
| abstract_inverted_index.for | 9 |
| abstract_inverted_index.low | 41 |
| abstract_inverted_index.new | 76 |
| abstract_inverted_index.the | 25, 54 |
| abstract_inverted_index.find | 52 |
| abstract_inverted_index.free | 58 |
| abstract_inverted_index.from | 59 |
| abstract_inverted_index.high | 62 |
| abstract_inverted_index.rule | 72 |
| abstract_inverted_index.that | 53 |
| abstract_inverted_index.thin | 14 |
| abstract_inverted_index.with | 2, 21, 29, 39 |
| abstract_inverted_index.among | 44 |
| abstract_inverted_index.human | 67 |
| abstract_inverted_index.reach | 35 |
| abstract_inverted_index.scale | 23 |
| abstract_inverted_index.shows | 75 |
| abstract_inverted_index.films. | 15 |
| abstract_inverted_index.growth | 11 |
| abstract_inverted_index.mixing | 42 |
| abstract_inverted_index.single | 37 |
| abstract_inverted_index.stable | 18 |
| abstract_inverted_index.stages | 8 |
| abstract_inverted_index.explore | 17 |
| abstract_inverted_index.nitride | 82 |
| abstract_inverted_index.succeed | 33 |
| abstract_inverted_index.surface | 19 |
| abstract_inverted_index.Bayesian | 30 |
| abstract_inverted_index.combined | 28 |
| abstract_inverted_index.counting | 71 |
| abstract_inverted_index.electron | 70 |
| abstract_inverted_index.enthalpy | 43 |
| abstract_inverted_index.hundreds | 45 |
| abstract_inverted_index.locally, | 73 |
| abstract_inverted_index.obtained | 55 |
| abstract_inverted_index.possible | 48 |
| abstract_inverted_index.surfaces | 1 |
| abstract_inverted_index.symmetry | 63 |
| abstract_inverted_index.thousand | 47 |
| abstract_inverted_index.GaN(0001) | 0 |
| abstract_inverted_index.adsorbate | 77 |
| abstract_inverted_index.candidate | 49 |
| abstract_inverted_index.epitaxial | 10 |
| abstract_inverted_index.nanometer | 22 |
| abstract_inverted_index.satisfies | 69 |
| abstract_inverted_index.structure | 38, 56 |
| abstract_inverted_index.introduced | 65 |
| abstract_inverted_index.intuition, | 68 |
| abstract_inverted_index.postulated | 61 |
| abstract_inverted_index.previously | 64 |
| abstract_inverted_index.reflecting | 79 |
| abstract_inverted_index.structures | 20 |
| abstract_inverted_index.fundamental | 7 |
| abstract_inverted_index.structures. | 50 |
| abstract_inverted_index.H-adsorbates | 5 |
| abstract_inverted_index.arrangement, | 78 |
| abstract_inverted_index.calculations | 27 |
| abstract_inverted_index.optimization, | 31 |
| abstract_inverted_index.semiconductor | 13 |
| abstract_inverted_index.satisfactorily | 40 |
| abstract_inverted_index.characteristics | 80 |
| abstract_inverted_index.semiconductors. | 83 |
| abstract_inverted_index.density-functional | 26 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.4000000059604645 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.14009099 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |