Exploration of hybrid deep learning algorithms for covid-19 mrna vaccine degradation prediction system Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.26555/ijain.v8i3.950
Coronavirus causes a global pandemic that has adversely affected public health, the economy, including every life aspect. To manage the spread, innumerable measurements are gathered. Administering vaccines is considered to be among the precautionary steps under the blueprint. Among all vaccines, the messenger ribonucleic acid (mRNA) vaccines provide notable effectiveness with minimal side effects. However, it is easily degraded and limits its application. Therefore, considering the cruciality of predicting the degradation rate of the mRNA vaccine, this prediction study is proposed. In addition, this study compared the hybridizing sequence of the hybrid model to identify its influence on prediction performance. Five models are created for exploration and prediction on the COVID-19 mRNA vaccine dataset provided by Stanford University and made accessible on the Kaggle community platform employing the two deep learning algorithms, Long Short-Term Memory (LSTM) as well as Gated Recurrent Unit (GRU). The Mean Columnwise Root Mean Square Error (MCRMSE) performance metric was utilized to assess each model’s performance. Results demonstrated that both GRU and LSTM are befitting for predicting the degradation rate of COVID-19 mRNA vaccines. Moreover, performance improvement could be achieved by performing the hybridization approach. Among Hybrid_1, Hybrid_2, and Hybrid_3, when trained with Set_1 augmented data, Hybrid_3 with the lowest training error (0.1257) and validation error (0.1324) surpassed the other two models; the same for model training with Set_2 augmented data, scoring 0.0164 and 0.0175 MCRMSE for training error and validation error, respectively. The variance in results obtained by hybrid models from experimenting claimed hybridizing sequence of algorithms in hybrid modeling should be concerned.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.26555/ijain.v8i3.950
- http://ijain.org/index.php/IJAIN/article/download/950/ijain_v8i3_p404-416
- OA Status
- gold
- Cited By
- 6
- References
- 45
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4320031095
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4320031095Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.26555/ijain.v8i3.950Digital Object Identifier
- Title
-
Exploration of hybrid deep learning algorithms for covid-19 mrna vaccine degradation prediction systemWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-30Full publication date if available
- Authors
-
Soon Hwai Ing, Azian Azamimi Abdullah, Mohd Yusoff Mashor, Zeti‐Azura Mohamed‐Hussein, Zeehaida Mohamed, Wei Chern AngList of authors in order
- Landing page
-
https://doi.org/10.26555/ijain.v8i3.950Publisher landing page
- PDF URL
-
https://ijain.org/index.php/IJAIN/article/download/950/ijain_v8i3_p404-416Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ijain.org/index.php/IJAIN/article/download/950/ijain_v8i3_p404-416Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Machine learning, Mean squared error, Blueprint, Deep learning, Artificial neural network, Coronavirus disease 2019 (COVID-19), Algorithm, Word error rate, Statistics, Medicine, Mathematics, Engineering, Disease, Mechanical engineering, Infectious disease (medical specialty), PathologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 3, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
45Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4320031095 |
|---|---|
| doi | https://doi.org/10.26555/ijain.v8i3.950 |
| ids.doi | https://doi.org/10.26555/ijain.v8i3.950 |
| ids.openalex | https://openalex.org/W4320031095 |
| fwci | 1.82101411 |
| type | article |
| title | Exploration of hybrid deep learning algorithms for covid-19 mrna vaccine degradation prediction system |
| biblio.issue | 3 |
| biblio.volume | 8 |
| biblio.last_page | 404 |
| biblio.first_page | 404 |
| topics[0].id | https://openalex.org/T13791 |
| topics[0].field.id | https://openalex.org/fields/34 |
| topics[0].field.display_name | Veterinary |
| topics[0].score | 0.9710000157356262 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3404 |
| topics[0].subfield.display_name | Small Animals |
| topics[0].display_name | Veterinary medicine and infectious diseases |
| topics[1].id | https://openalex.org/T10340 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9657999873161316 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2713 |
| topics[1].subfield.display_name | Epidemiology |
| topics[1].display_name | Hepatitis B Virus Studies |
| topics[2].id | https://openalex.org/T11775 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9384999871253967 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | COVID-19 diagnosis using AI |
| funders[0].id | https://openalex.org/F4320321709 |
| funders[0].ror | https://ror.org/05mcs2t73 |
| funders[0].display_name | Ministry of Higher Education, Malaysia |
| is_xpac | False |
| apc_list.value | 200 |
| apc_list.currency | USD |
| apc_list.value_usd | 200 |
| apc_paid.value | 200 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 200 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6998385190963745 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6227750182151794 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5835925340652466 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C139945424 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5460886359214783 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[3].display_name | Mean squared error |
| concepts[4].id | https://openalex.org/C155911762 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49576815962791443 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q422321 |
| concepts[4].display_name | Blueprint |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.47517886757850647 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46195530891418457 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C3008058167 |
| concepts[7].level | 4 |
| concepts[7].score | 0.4525241255760193 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q84263196 |
| concepts[7].display_name | Coronavirus disease 2019 (COVID-19) |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4325099587440491 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C40969351 |
| concepts[9].level | 2 |
| concepts[9].score | 0.419376939535141 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3516228 |
| concepts[9].display_name | Word error rate |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.22507312893867493 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C71924100 |
| concepts[11].level | 0 |
| concepts[11].score | 0.16674667596817017 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[11].display_name | Medicine |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.1328638792037964 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.10316446423530579 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C2779134260 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[14].display_name | Disease |
| concepts[15].id | https://openalex.org/C78519656 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[15].display_name | Mechanical engineering |
| concepts[16].id | https://openalex.org/C524204448 |
| concepts[16].level | 3 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q788926 |
| concepts[16].display_name | Infectious disease (medical specialty) |
| concepts[17].id | https://openalex.org/C142724271 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[17].display_name | Pathology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6998385190963745 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6227750182151794 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.5835925340652466 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/mean-squared-error |
| keywords[3].score | 0.5460886359214783 |
| keywords[3].display_name | Mean squared error |
| keywords[4].id | https://openalex.org/keywords/blueprint |
| keywords[4].score | 0.49576815962791443 |
| keywords[4].display_name | Blueprint |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.47517886757850647 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.46195530891418457 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/coronavirus-disease-2019 |
| keywords[7].score | 0.4525241255760193 |
| keywords[7].display_name | Coronavirus disease 2019 (COVID-19) |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.4325099587440491 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/word-error-rate |
| keywords[9].score | 0.419376939535141 |
| keywords[9].display_name | Word error rate |
| keywords[10].id | https://openalex.org/keywords/statistics |
| keywords[10].score | 0.22507312893867493 |
| keywords[10].display_name | Statistics |
| keywords[11].id | https://openalex.org/keywords/medicine |
| keywords[11].score | 0.16674667596817017 |
| keywords[11].display_name | Medicine |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.1328638792037964 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/engineering |
| keywords[13].score | 0.10316446423530579 |
| keywords[13].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.26555/ijain.v8i3.950 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2738302941 |
| locations[0].source.issn | 2442-6571, 2548-3161 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2442-6571 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | International Journal of Advances in Intelligent Informatics |
| locations[0].source.host_organization | https://openalex.org/P4310319805 |
| locations[0].source.host_organization_name | Ahmad Dahlan University |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319805 |
| locations[0].source.host_organization_lineage_names | Ahmad Dahlan University |
| locations[0].license | cc-by-sa |
| locations[0].pdf_url | http://ijain.org/index.php/IJAIN/article/download/950/ijain_v8i3_p404-416 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Advances in Intelligent Informatics |
| locations[0].landing_page_url | https://doi.org/10.26555/ijain.v8i3.950 |
| locations[1].id | pmh:oai:doaj.org/article:3c9b1d724f604a23b60dc3770b44291f |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IJAIN (International Journal of Advances in Intelligent Informatics), Vol 8, Iss 3, Pp 404-416 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/3c9b1d724f604a23b60dc3770b44291f |
| locations[2].id | pmh:oai:ojs.ijain.org:article/950 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401515 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | International Journal of Advances in Intelligent Informatics - International Journal of Advances in Intelligent Informatics |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | info:eu-repo/semantics/article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | International Journal of Advances in Intelligent Informatics; Vol 8, No 3 (2022): November 2022; 404-416 |
| locations[2].landing_page_url | http://ijain.org/index.php/IJAIN/article/view/950 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5066056065 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Soon Hwai Ing |
| authorships[0].countries | MY |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I65079550 |
| authorships[0].affiliations[0].raw_affiliation_string | Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis |
| authorships[0].institutions[0].id | https://openalex.org/I65079550 |
| authorships[0].institutions[0].ror | https://ror.org/00xmkb790 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I65079550 |
| authorships[0].institutions[0].country_code | MY |
| authorships[0].institutions[0].display_name | Universiti Malaysia Perlis |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Soon Hwai Ing |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis |
| authorships[1].author.id | https://openalex.org/A5086801323 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5851-7705 |
| authorships[1].author.display_name | Azian Azamimi Abdullah |
| authorships[1].countries | MY |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I65079550 |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis |
| authorships[1].institutions[0].id | https://openalex.org/I65079550 |
| authorships[1].institutions[0].ror | https://ror.org/00xmkb790 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I65079550 |
| authorships[1].institutions[0].country_code | MY |
| authorships[1].institutions[0].display_name | Universiti Malaysia Perlis |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Azian Azamimi Abdullah |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis |
| authorships[2].author.id | https://openalex.org/A5027715523 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5541-381X |
| authorships[2].author.display_name | Mohd Yusoff Mashor |
| authorships[2].countries | MY |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I65079550 |
| authorships[2].affiliations[0].raw_affiliation_string | Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis |
| authorships[2].institutions[0].id | https://openalex.org/I65079550 |
| authorships[2].institutions[0].ror | https://ror.org/00xmkb790 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I65079550 |
| authorships[2].institutions[0].country_code | MY |
| authorships[2].institutions[0].display_name | Universiti Malaysia Perlis |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mohd Yusoff Mashor |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis |
| authorships[3].author.id | https://openalex.org/A5042513462 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5386-7260 |
| authorships[3].author.display_name | Zeti‐Azura Mohamed‐Hussein |
| authorships[3].countries | MY |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I885383172 |
| authorships[3].affiliations[0].raw_affiliation_string | Centre for Bioinformatics Research & Department of Applied Physics, Universiti Kebangsaan Malaysia |
| authorships[3].institutions[0].id | https://openalex.org/I885383172 |
| authorships[3].institutions[0].ror | https://ror.org/00bw8d226 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I885383172 |
| authorships[3].institutions[0].country_code | MY |
| authorships[3].institutions[0].display_name | National University of Malaysia |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zeti-Azura Mohamed-Hussein |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Centre for Bioinformatics Research & Department of Applied Physics, Universiti Kebangsaan Malaysia |
| authorships[4].author.id | https://openalex.org/A5038197154 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9661-3260 |
| authorships[4].author.display_name | Zeehaida Mohamed |
| authorships[4].countries | MY |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I139322472 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Medical Sciences, Universiti Sains Malaysia |
| authorships[4].institutions[0].id | https://openalex.org/I139322472 |
| authorships[4].institutions[0].ror | https://ror.org/02rgb2k63 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I139322472 |
| authorships[4].institutions[0].country_code | MY |
| authorships[4].institutions[0].display_name | Universiti Sains Malaysia |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zeehaida Mohamed |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Medical Sciences, Universiti Sains Malaysia |
| authorships[5].author.id | https://openalex.org/A5087599552 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6599-3301 |
| authorships[5].author.display_name | Wei Chern Ang |
| authorships[5].countries | MY |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I105292261 |
| authorships[5].affiliations[0].raw_affiliation_string | Clinical Research Centre & Department of Pharmacy, Hospital Tuanku Fauziah, Ministry of Health Malaysia |
| authorships[5].institutions[0].id | https://openalex.org/I105292261 |
| authorships[5].institutions[0].ror | https://ror.org/05ddxe180 |
| authorships[5].institutions[0].type | government |
| authorships[5].institutions[0].lineage | https://openalex.org/I105292261 |
| authorships[5].institutions[0].country_code | MY |
| authorships[5].institutions[0].display_name | Ministry of Health |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Wei Chern Ang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Clinical Research Centre & Department of Pharmacy, Hospital Tuanku Fauziah, Ministry of Health Malaysia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://ijain.org/index.php/IJAIN/article/download/950/ijain_v8i3_p404-416 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Exploration of hybrid deep learning algorithms for covid-19 mrna vaccine degradation prediction system |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13791 |
| primary_topic.field.id | https://openalex.org/fields/34 |
| primary_topic.field.display_name | Veterinary |
| primary_topic.score | 0.9710000157356262 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3404 |
| primary_topic.subfield.display_name | Small Animals |
| primary_topic.display_name | Veterinary medicine and infectious diseases |
| related_works | https://openalex.org/W4380075502, https://openalex.org/W4223943233, https://openalex.org/W4312200629, https://openalex.org/W4360585206, https://openalex.org/W4364306694, https://openalex.org/W4380086463, https://openalex.org/W4225161397, https://openalex.org/W3014300295, https://openalex.org/W3164822677, https://openalex.org/W2795261237 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | doi:10.26555/ijain.v8i3.950 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2738302941 |
| best_oa_location.source.issn | 2442-6571, 2548-3161 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2442-6571 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | International Journal of Advances in Intelligent Informatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310319805 |
| best_oa_location.source.host_organization_name | Ahmad Dahlan University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319805 |
| best_oa_location.source.host_organization_lineage_names | Ahmad Dahlan University |
| best_oa_location.license | cc-by-sa |
| best_oa_location.pdf_url | http://ijain.org/index.php/IJAIN/article/download/950/ijain_v8i3_p404-416 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-sa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Advances in Intelligent Informatics |
| best_oa_location.landing_page_url | https://doi.org/10.26555/ijain.v8i3.950 |
| primary_location.id | doi:10.26555/ijain.v8i3.950 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2738302941 |
| primary_location.source.issn | 2442-6571, 2548-3161 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2442-6571 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | International Journal of Advances in Intelligent Informatics |
| primary_location.source.host_organization | https://openalex.org/P4310319805 |
| primary_location.source.host_organization_name | Ahmad Dahlan University |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319805 |
| primary_location.source.host_organization_lineage_names | Ahmad Dahlan University |
| primary_location.license | cc-by-sa |
| primary_location.pdf_url | http://ijain.org/index.php/IJAIN/article/download/950/ijain_v8i3_p404-416 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-sa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Advances in Intelligent Informatics |
| primary_location.landing_page_url | https://doi.org/10.26555/ijain.v8i3.950 |
| publication_date | 2022-11-30 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3001897055, https://openalex.org/W3004416358, https://openalex.org/W3082651931, https://openalex.org/W2907833844, https://openalex.org/W3110973116, https://openalex.org/W3204915352, https://openalex.org/W3152639260, https://openalex.org/W3197273757, https://openalex.org/W3207022909, https://openalex.org/W3175714782, https://openalex.org/W3197355027, https://openalex.org/W3212344829, https://openalex.org/W3200792349, https://openalex.org/W4206679117, https://openalex.org/W4206569030, https://openalex.org/W4221059785, https://openalex.org/W3173923067, https://openalex.org/W2914465766, https://openalex.org/W3127988644, https://openalex.org/W4220987302, https://openalex.org/W4214658714, https://openalex.org/W4206899107, https://openalex.org/W2807561401, https://openalex.org/W3085370460, https://openalex.org/W4281710902, https://openalex.org/W4281661769, https://openalex.org/W3210290507, https://openalex.org/W4224991288, https://openalex.org/W3192821584, https://openalex.org/W4285045555, https://openalex.org/W1988474781, https://openalex.org/W1904365287, https://openalex.org/W4288364646, https://openalex.org/W3184367114, https://openalex.org/W3118795360, https://openalex.org/W3085213413, https://openalex.org/W3156158944, https://openalex.org/W3155532891, https://openalex.org/W3173661232, https://openalex.org/W3027880148, https://openalex.org/W2084732496, https://openalex.org/W4223535787, https://openalex.org/W3201503618, https://openalex.org/W3081151186, https://openalex.org/W3000350302 |
| referenced_works_count | 45 |
| abstract_inverted_index.a | 2 |
| abstract_inverted_index.In | 81 |
| abstract_inverted_index.To | 17 |
| abstract_inverted_index.as | 136, 138 |
| abstract_inverted_index.be | 30, 182, 256 |
| abstract_inverted_index.by | 115, 184, 242 |
| abstract_inverted_index.in | 239, 252 |
| abstract_inverted_index.is | 27, 56, 79 |
| abstract_inverted_index.it | 55 |
| abstract_inverted_index.of | 67, 72, 89, 174, 250 |
| abstract_inverted_index.on | 97, 108, 121 |
| abstract_inverted_index.to | 29, 93, 155 |
| abstract_inverted_index.GRU | 164 |
| abstract_inverted_index.The | 143, 237 |
| abstract_inverted_index.all | 39 |
| abstract_inverted_index.and | 59, 106, 118, 165, 192, 207, 227, 233 |
| abstract_inverted_index.are | 23, 102, 167 |
| abstract_inverted_index.for | 104, 169, 218, 230 |
| abstract_inverted_index.has | 6 |
| abstract_inverted_index.its | 61, 95 |
| abstract_inverted_index.the | 11, 19, 32, 36, 41, 65, 69, 73, 86, 90, 109, 122, 127, 171, 186, 202, 212, 216 |
| abstract_inverted_index.two | 128, 214 |
| abstract_inverted_index.was | 153 |
| abstract_inverted_index.Five | 100 |
| abstract_inverted_index.LSTM | 166 |
| abstract_inverted_index.Long | 132 |
| abstract_inverted_index.Mean | 144, 147 |
| abstract_inverted_index.Root | 146 |
| abstract_inverted_index.Unit | 141 |
| abstract_inverted_index.acid | 44 |
| abstract_inverted_index.both | 163 |
| abstract_inverted_index.deep | 129 |
| abstract_inverted_index.each | 157 |
| abstract_inverted_index.from | 245 |
| abstract_inverted_index.life | 15 |
| abstract_inverted_index.mRNA | 74, 111, 176 |
| abstract_inverted_index.made | 119 |
| abstract_inverted_index.rate | 71, 173 |
| abstract_inverted_index.same | 217 |
| abstract_inverted_index.side | 52 |
| abstract_inverted_index.that | 5, 162 |
| abstract_inverted_index.this | 76, 83 |
| abstract_inverted_index.well | 137 |
| abstract_inverted_index.when | 194 |
| abstract_inverted_index.with | 50, 196, 201, 221 |
| abstract_inverted_index.Among | 38, 189 |
| abstract_inverted_index.Error | 149 |
| abstract_inverted_index.Gated | 139 |
| abstract_inverted_index.Set_1 | 197 |
| abstract_inverted_index.Set_2 | 222 |
| abstract_inverted_index.among | 31 |
| abstract_inverted_index.could | 181 |
| abstract_inverted_index.data, | 199, 224 |
| abstract_inverted_index.error | 205, 209, 232 |
| abstract_inverted_index.every | 14 |
| abstract_inverted_index.model | 92, 219 |
| abstract_inverted_index.other | 213 |
| abstract_inverted_index.steps | 34 |
| abstract_inverted_index.study | 78, 84 |
| abstract_inverted_index.under | 35 |
| abstract_inverted_index.(GRU). | 142 |
| abstract_inverted_index.(LSTM) | 135 |
| abstract_inverted_index.(mRNA) | 45 |
| abstract_inverted_index.0.0164 | 226 |
| abstract_inverted_index.0.0175 | 228 |
| abstract_inverted_index.Kaggle | 123 |
| abstract_inverted_index.MCRMSE | 229 |
| abstract_inverted_index.Memory | 134 |
| abstract_inverted_index.Square | 148 |
| abstract_inverted_index.assess | 156 |
| abstract_inverted_index.causes | 1 |
| abstract_inverted_index.easily | 57 |
| abstract_inverted_index.error, | 235 |
| abstract_inverted_index.global | 3 |
| abstract_inverted_index.hybrid | 91, 243, 253 |
| abstract_inverted_index.limits | 60 |
| abstract_inverted_index.lowest | 203 |
| abstract_inverted_index.manage | 18 |
| abstract_inverted_index.metric | 152 |
| abstract_inverted_index.models | 101, 244 |
| abstract_inverted_index.public | 9 |
| abstract_inverted_index.should | 255 |
| abstract_inverted_index.Results | 160 |
| abstract_inverted_index.aspect. | 16 |
| abstract_inverted_index.claimed | 247 |
| abstract_inverted_index.created | 103 |
| abstract_inverted_index.dataset | 113 |
| abstract_inverted_index.health, | 10 |
| abstract_inverted_index.minimal | 51 |
| abstract_inverted_index.models; | 215 |
| abstract_inverted_index.notable | 48 |
| abstract_inverted_index.provide | 47 |
| abstract_inverted_index.results | 240 |
| abstract_inverted_index.scoring | 225 |
| abstract_inverted_index.spread, | 20 |
| abstract_inverted_index.trained | 195 |
| abstract_inverted_index.vaccine | 112 |
| abstract_inverted_index.(0.1257) | 206 |
| abstract_inverted_index.(0.1324) | 210 |
| abstract_inverted_index.(MCRMSE) | 150 |
| abstract_inverted_index.COVID-19 | 110, 175 |
| abstract_inverted_index.However, | 54 |
| abstract_inverted_index.Hybrid_3 | 200 |
| abstract_inverted_index.Stanford | 116 |
| abstract_inverted_index.achieved | 183 |
| abstract_inverted_index.affected | 8 |
| abstract_inverted_index.compared | 85 |
| abstract_inverted_index.degraded | 58 |
| abstract_inverted_index.economy, | 12 |
| abstract_inverted_index.effects. | 53 |
| abstract_inverted_index.identify | 94 |
| abstract_inverted_index.learning | 130 |
| abstract_inverted_index.modeling | 254 |
| abstract_inverted_index.obtained | 241 |
| abstract_inverted_index.pandemic | 4 |
| abstract_inverted_index.platform | 125 |
| abstract_inverted_index.provided | 114 |
| abstract_inverted_index.sequence | 88, 249 |
| abstract_inverted_index.training | 204, 220, 231 |
| abstract_inverted_index.utilized | 154 |
| abstract_inverted_index.vaccine, | 75 |
| abstract_inverted_index.vaccines | 26, 46 |
| abstract_inverted_index.variance | 238 |
| abstract_inverted_index.Hybrid_1, | 190 |
| abstract_inverted_index.Hybrid_2, | 191 |
| abstract_inverted_index.Hybrid_3, | 193 |
| abstract_inverted_index.Moreover, | 178 |
| abstract_inverted_index.Recurrent | 140 |
| abstract_inverted_index.addition, | 82 |
| abstract_inverted_index.adversely | 7 |
| abstract_inverted_index.approach. | 188 |
| abstract_inverted_index.augmented | 198, 223 |
| abstract_inverted_index.befitting | 168 |
| abstract_inverted_index.community | 124 |
| abstract_inverted_index.employing | 126 |
| abstract_inverted_index.gathered. | 24 |
| abstract_inverted_index.including | 13 |
| abstract_inverted_index.influence | 96 |
| abstract_inverted_index.messenger | 42 |
| abstract_inverted_index.model’s | 158 |
| abstract_inverted_index.proposed. | 80 |
| abstract_inverted_index.surpassed | 211 |
| abstract_inverted_index.vaccines, | 40 |
| abstract_inverted_index.vaccines. | 177 |
| abstract_inverted_index.Columnwise | 145 |
| abstract_inverted_index.Short-Term | 133 |
| abstract_inverted_index.Therefore, | 63 |
| abstract_inverted_index.University | 117 |
| abstract_inverted_index.accessible | 120 |
| abstract_inverted_index.algorithms | 251 |
| abstract_inverted_index.blueprint. | 37 |
| abstract_inverted_index.concerned. | 257 |
| abstract_inverted_index.considered | 28 |
| abstract_inverted_index.cruciality | 66 |
| abstract_inverted_index.performing | 185 |
| abstract_inverted_index.predicting | 68, 170 |
| abstract_inverted_index.prediction | 77, 98, 107 |
| abstract_inverted_index.validation | 208, 234 |
| abstract_inverted_index.Coronavirus | 0 |
| abstract_inverted_index.algorithms, | 131 |
| abstract_inverted_index.considering | 64 |
| abstract_inverted_index.degradation | 70, 172 |
| abstract_inverted_index.exploration | 105 |
| abstract_inverted_index.hybridizing | 87, 248 |
| abstract_inverted_index.improvement | 180 |
| abstract_inverted_index.innumerable | 21 |
| abstract_inverted_index.performance | 151, 179 |
| abstract_inverted_index.ribonucleic | 43 |
| abstract_inverted_index.application. | 62 |
| abstract_inverted_index.demonstrated | 161 |
| abstract_inverted_index.measurements | 22 |
| abstract_inverted_index.performance. | 99, 159 |
| abstract_inverted_index.Administering | 25 |
| abstract_inverted_index.effectiveness | 49 |
| abstract_inverted_index.experimenting | 246 |
| abstract_inverted_index.hybridization | 187 |
| abstract_inverted_index.precautionary | 33 |
| abstract_inverted_index.respectively. | 236 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.8299999833106995 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.80375536 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |