Exploring a novel linked dataset and building linked data analytics skills in Public Health Intelligence teams in Sussex. Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.23889/ijpds.v7i3.1937
ObjectivesPublic health intelligence teams in Sussex wanted to use newly linked health and social care data, to gain insights into local patterns of multi-morbidity, service use, service provision and socio-demographic data. In this study we report initial exploration of this new linked dataset, in a partnership between university and local authority analysts. ApproachThe Sussex Integrated Dataset (SID) comprises person-level health and social care data on residents and services users across Sussex. During a 6-month secondment, two analysts evaluated the number of data sources available for each individual, evaluated data quality for identifying long-term conditions, developed presentation methods to compare SID outputs on demographics and condition prevalence with open source or expected distributions, and identified the skills-mix and infrastructure required in local authorities for future work. They worked alongside the SID data processing team to inform and improve data quality; and with university data-scientists to learn prediction modelling. ResultsAnalysts established an efficient querying system to investigate the breadth of data available, more thoroughly focusing on encounters and demographic data in all sources. Long-term conditions were identified through code lists in a range of NHS data sources, to enable consideration of multi-morbidity by demographic. A range of quality issues were identified, such as non-current patients being uploaded into the SID, distorting prevalence estimates, and GP practice populations that did not match expected figures published by NHS digital. Results were represented in multi-morbidity plots, maps, and theographs. Through this data exploration, we have been able to identify the skills-mix needed for local Public Health Intelligence teams to maximise the use of linked data to achieve Public Health objectives. ConclusionWe have made many conceptual breakthroughs, particularly in understanding data quality, however still need a more complete understanding of quality issues in SID for public health outputs to have meaningful use. Further investigation into the patterns of service use, as well as modelling of multi-morbidity to make predictions and target interventions, will be key next steps.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.23889/ijpds.v7i3.1937
- https://ijpds.org/article/download/1937/3753
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4294243482
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4294243482Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.23889/ijpds.v7i3.1937Digital Object Identifier
- Title
-
Exploring a novel linked dataset and building linked data analytics skills in Public Health Intelligence teams in Sussex.Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-08-25Full publication date if available
- Authors
-
Natalie Johnston, Elizabeth Ford, Richard S. Tyler, Victoria Spencer-Hughes, Anotida Madzvamuse, Graham Evans, Kate GilchristList of authors in order
- Landing page
-
https://doi.org/10.23889/ijpds.v7i3.1937Publisher landing page
- PDF URL
-
https://ijpds.org/article/download/1937/3753Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ijpds.org/article/download/1937/3753Direct OA link when available
- Concepts
-
Upload, General partnership, Data science, Data quality, Analytics, Demographics, Computer science, Onboarding, Open data, Health care, Service (business), Knowledge management, Business, World Wide Web, Psychology, Marketing, Sociology, Social psychology, Economics, Economic growth, Demography, FinanceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4294243482 |
|---|---|
| doi | https://doi.org/10.23889/ijpds.v7i3.1937 |
| ids.doi | https://doi.org/10.23889/ijpds.v7i3.1937 |
| ids.openalex | https://openalex.org/W4294243482 |
| fwci | 0.0 |
| type | article |
| title | Exploring a novel linked dataset and building linked data analytics skills in Public Health Intelligence teams in Sussex. |
| biblio.issue | 3 |
| biblio.volume | 7 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12246 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9944999814033508 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2713 |
| topics[0].subfield.display_name | Epidemiology |
| topics[0].display_name | Chronic Disease Management Strategies |
| topics[1].id | https://openalex.org/T14400 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.9861000180244446 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3605 |
| topics[1].subfield.display_name | Health Information Management |
| topics[1].display_name | Medical Coding and Health Information |
| topics[2].id | https://openalex.org/T10235 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9679999947547913 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3306 |
| topics[2].subfield.display_name | Health |
| topics[2].display_name | Health disparities and outcomes |
| is_xpac | False |
| apc_list.value | 1425 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1747 |
| apc_paid.value | 1425 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1747 |
| concepts[0].id | https://openalex.org/C71901391 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5973461866378784 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7126699 |
| concepts[0].display_name | Upload |
| concepts[1].id | https://openalex.org/C71750763 |
| concepts[1].level | 2 |
| concepts[1].score | 0.58406662940979 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q646164 |
| concepts[1].display_name | General partnership |
| concepts[2].id | https://openalex.org/C2522767166 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5755448937416077 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[2].display_name | Data science |
| concepts[3].id | https://openalex.org/C24756922 |
| concepts[3].level | 3 |
| concepts[3].score | 0.52198326587677 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1757694 |
| concepts[3].display_name | Data quality |
| concepts[4].id | https://openalex.org/C79158427 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5172718167304993 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q485396 |
| concepts[4].display_name | Analytics |
| concepts[5].id | https://openalex.org/C2780084366 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5079904198646545 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[5].display_name | Demographics |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.5001921653747559 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C2779185108 |
| concepts[7].level | 2 |
| concepts[7].score | 0.48235028982162476 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7091744 |
| concepts[7].display_name | Onboarding |
| concepts[8].id | https://openalex.org/C2780535194 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4713912606239319 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q309901 |
| concepts[8].display_name | Open data |
| concepts[9].id | https://openalex.org/C160735492 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4301242232322693 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q31207 |
| concepts[9].display_name | Health care |
| concepts[10].id | https://openalex.org/C2780378061 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3771577477455139 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q25351891 |
| concepts[10].display_name | Service (business) |
| concepts[11].id | https://openalex.org/C56739046 |
| concepts[11].level | 1 |
| concepts[11].score | 0.33604925870895386 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q192060 |
| concepts[11].display_name | Knowledge management |
| concepts[12].id | https://openalex.org/C144133560 |
| concepts[12].level | 0 |
| concepts[12].score | 0.18631935119628906 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[12].display_name | Business |
| concepts[13].id | https://openalex.org/C136764020 |
| concepts[13].level | 1 |
| concepts[13].score | 0.18276727199554443 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[13].display_name | World Wide Web |
| concepts[14].id | https://openalex.org/C15744967 |
| concepts[14].level | 0 |
| concepts[14].score | 0.16533395648002625 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[14].display_name | Psychology |
| concepts[15].id | https://openalex.org/C162853370 |
| concepts[15].level | 1 |
| concepts[15].score | 0.12433633208274841 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[15].display_name | Marketing |
| concepts[16].id | https://openalex.org/C144024400 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[16].display_name | Sociology |
| concepts[17].id | https://openalex.org/C77805123 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[17].display_name | Social psychology |
| concepts[18].id | https://openalex.org/C162324750 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[18].display_name | Economics |
| concepts[19].id | https://openalex.org/C50522688 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[19].display_name | Economic growth |
| concepts[20].id | https://openalex.org/C149923435 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[20].display_name | Demography |
| concepts[21].id | https://openalex.org/C10138342 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[21].display_name | Finance |
| keywords[0].id | https://openalex.org/keywords/upload |
| keywords[0].score | 0.5973461866378784 |
| keywords[0].display_name | Upload |
| keywords[1].id | https://openalex.org/keywords/general-partnership |
| keywords[1].score | 0.58406662940979 |
| keywords[1].display_name | General partnership |
| keywords[2].id | https://openalex.org/keywords/data-science |
| keywords[2].score | 0.5755448937416077 |
| keywords[2].display_name | Data science |
| keywords[3].id | https://openalex.org/keywords/data-quality |
| keywords[3].score | 0.52198326587677 |
| keywords[3].display_name | Data quality |
| keywords[4].id | https://openalex.org/keywords/analytics |
| keywords[4].score | 0.5172718167304993 |
| keywords[4].display_name | Analytics |
| keywords[5].id | https://openalex.org/keywords/demographics |
| keywords[5].score | 0.5079904198646545 |
| keywords[5].display_name | Demographics |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.5001921653747559 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/onboarding |
| keywords[7].score | 0.48235028982162476 |
| keywords[7].display_name | Onboarding |
| keywords[8].id | https://openalex.org/keywords/open-data |
| keywords[8].score | 0.4713912606239319 |
| keywords[8].display_name | Open data |
| keywords[9].id | https://openalex.org/keywords/health-care |
| keywords[9].score | 0.4301242232322693 |
| keywords[9].display_name | Health care |
| keywords[10].id | https://openalex.org/keywords/service |
| keywords[10].score | 0.3771577477455139 |
| keywords[10].display_name | Service (business) |
| keywords[11].id | https://openalex.org/keywords/knowledge-management |
| keywords[11].score | 0.33604925870895386 |
| keywords[11].display_name | Knowledge management |
| keywords[12].id | https://openalex.org/keywords/business |
| keywords[12].score | 0.18631935119628906 |
| keywords[12].display_name | Business |
| keywords[13].id | https://openalex.org/keywords/world-wide-web |
| keywords[13].score | 0.18276727199554443 |
| keywords[13].display_name | World Wide Web |
| keywords[14].id | https://openalex.org/keywords/psychology |
| keywords[14].score | 0.16533395648002625 |
| keywords[14].display_name | Psychology |
| keywords[15].id | https://openalex.org/keywords/marketing |
| keywords[15].score | 0.12433633208274841 |
| keywords[15].display_name | Marketing |
| language | en |
| locations[0].id | doi:10.23889/ijpds.v7i3.1937 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764528117 |
| locations[0].source.issn | 2399-4908 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2399-4908 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | International Journal for Population Data Science |
| locations[0].source.host_organization | https://openalex.org/P4310311758 |
| locations[0].source.host_organization_name | Swansea University |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311758 |
| locations[0].source.host_organization_lineage_names | Swansea University |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ijpds.org/article/download/1937/3753 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Population Data Science |
| locations[0].landing_page_url | https://doi.org/10.23889/ijpds.v7i3.1937 |
| locations[1].id | pmh:oai:doaj.org/article:b560d4a5301941be82f273ff03a1d77f |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | International Journal of Population Data Science, Vol 7, Iss 3 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/b560d4a5301941be82f273ff03a1d77f |
| locations[2].id | pmh:oai:figshare.com:article/23493326 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400572 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| locations[2].source.host_organization | https://openalex.org/I196829312 |
| locations[2].source.host_organization_name | La Trobe University |
| locations[2].source.host_organization_lineage | https://openalex.org/I196829312 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://figshare.com/articles/conference_contribution/Exploring_a_novel_linked_dataset_and_building_linked_data_analytics_skills_in_Public_Health_Intelligence_teams_in_Sussex/23493326 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:9644908 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Int J Popul Data Sci |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9644908 |
| locations[4].id | pmh:oai:sro.sussex.ac.uk:109231 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400129 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | Sussex Research Online (University of Sussex) |
| locations[4].source.host_organization | https://openalex.org/I162608824 |
| locations[4].source.host_organization_name | University of Sussex |
| locations[4].source.host_organization_lineage | https://openalex.org/I162608824 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Conference Proceedings |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | http://sro.sussex.ac.uk/id/eprint/109231/1/document.pdf |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5044532231 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Natalie Johnston |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2800314275 |
| authorships[0].affiliations[0].raw_affiliation_string | Brighton & Hove City Council |
| authorships[0].institutions[0].id | https://openalex.org/I2800314275 |
| authorships[0].institutions[0].ror | https://ror.org/03d4e8748 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I2800314275 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | Brighton and Hove City Council |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Natalie Johnston |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Brighton & Hove City Council |
| authorships[1].author.id | https://openalex.org/A5061684613 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5613-8509 |
| authorships[1].author.display_name | Elizabeth Ford |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I100063501 |
| authorships[1].affiliations[0].raw_affiliation_string | Brighton and Sussex Medical School |
| authorships[1].institutions[0].id | https://openalex.org/I100063501 |
| authorships[1].institutions[0].ror | https://ror.org/01qz7fr76 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I100063501, https://openalex.org/I162608824, https://openalex.org/I71637028 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Brighton and Sussex Medical School |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Elizabeth Ford |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Brighton and Sussex Medical School |
| authorships[2].author.id | https://openalex.org/A5088736796 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2101-4714 |
| authorships[2].author.display_name | Richard S. Tyler |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I192274371 |
| authorships[2].affiliations[0].raw_affiliation_string | West Sussex County Council |
| authorships[2].institutions[0].id | https://openalex.org/I192274371 |
| authorships[2].institutions[0].ror | https://ror.org/016jwxj93 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I192274371 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | Surrey County Council |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Richard Tyler |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | West Sussex County Council |
| authorships[3].author.id | https://openalex.org/A5045423236 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9171-9667 |
| authorships[3].author.display_name | Victoria Spencer-Hughes |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I137377929 |
| authorships[3].affiliations[0].raw_affiliation_string | East Sussex County Council |
| authorships[3].institutions[0].id | https://openalex.org/I137377929 |
| authorships[3].institutions[0].ror | https://ror.org/0236s9n59 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I137377929 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | East Sussex County Council |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Vicki Spencer-Hughes |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | East Sussex County Council |
| authorships[4].author.id | https://openalex.org/A5075584405 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9511-8903 |
| authorships[4].author.display_name | Anotida Madzvamuse |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I162608824 |
| authorships[4].affiliations[0].raw_affiliation_string | University of Sussex |
| authorships[4].institutions[0].id | https://openalex.org/I162608824 |
| authorships[4].institutions[0].ror | https://ror.org/00ayhx656 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I162608824 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | University of Sussex |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Anotida Madzvamuse |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of Sussex |
| authorships[5].author.id | https://openalex.org/A5036622848 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Graham Evans |
| authorships[5].countries | GB |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I137377929 |
| authorships[5].affiliations[0].raw_affiliation_string | East Sussex County Council |
| authorships[5].institutions[0].id | https://openalex.org/I137377929 |
| authorships[5].institutions[0].ror | https://ror.org/0236s9n59 |
| authorships[5].institutions[0].type | government |
| authorships[5].institutions[0].lineage | https://openalex.org/I137377929 |
| authorships[5].institutions[0].country_code | GB |
| authorships[5].institutions[0].display_name | East Sussex County Council |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Graham Evans |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | East Sussex County Council |
| authorships[6].author.id | https://openalex.org/A5025557850 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4794-9278 |
| authorships[6].author.display_name | Kate Gilchrist |
| authorships[6].countries | GB |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I2800314275 |
| authorships[6].affiliations[0].raw_affiliation_string | Brighton & Hove City Council |
| authorships[6].institutions[0].id | https://openalex.org/I2800314275 |
| authorships[6].institutions[0].ror | https://ror.org/03d4e8748 |
| authorships[6].institutions[0].type | government |
| authorships[6].institutions[0].lineage | https://openalex.org/I2800314275 |
| authorships[6].institutions[0].country_code | GB |
| authorships[6].institutions[0].display_name | Brighton and Hove City Council |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Kate Gilchrist |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Brighton & Hove City Council |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ijpds.org/article/download/1937/3753 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-09-02T00:00:00 |
| display_name | Exploring a novel linked dataset and building linked data analytics skills in Public Health Intelligence teams in Sussex. |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12246 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9944999814033508 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2713 |
| primary_topic.subfield.display_name | Epidemiology |
| primary_topic.display_name | Chronic Disease Management Strategies |
| related_works | https://openalex.org/W3133615992, https://openalex.org/W3008854194, https://openalex.org/W3161889546, https://openalex.org/W2910106972, https://openalex.org/W2580843878, https://openalex.org/W4390337748, https://openalex.org/W4361745950, https://openalex.org/W3185796454, https://openalex.org/W70510318, https://openalex.org/W3046131390 |
| cited_by_count | 0 |
| locations_count | 5 |
| best_oa_location.id | doi:10.23889/ijpds.v7i3.1937 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764528117 |
| best_oa_location.source.issn | 2399-4908 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2399-4908 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | International Journal for Population Data Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310311758 |
| best_oa_location.source.host_organization_name | Swansea University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311758 |
| best_oa_location.source.host_organization_lineage_names | Swansea University |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ijpds.org/article/download/1937/3753 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Population Data Science |
| best_oa_location.landing_page_url | https://doi.org/10.23889/ijpds.v7i3.1937 |
| primary_location.id | doi:10.23889/ijpds.v7i3.1937 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764528117 |
| primary_location.source.issn | 2399-4908 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2399-4908 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | International Journal for Population Data Science |
| primary_location.source.host_organization | https://openalex.org/P4310311758 |
| primary_location.source.host_organization_name | Swansea University |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311758 |
| primary_location.source.host_organization_lineage_names | Swansea University |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ijpds.org/article/download/1937/3753 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Population Data Science |
| primary_location.landing_page_url | https://doi.org/10.23889/ijpds.v7i3.1937 |
| publication_date | 2022-08-25 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 192 |
| abstract_inverted_index.a | 44, 72, 179, 279 |
| abstract_inverted_index.GP | 212 |
| abstract_inverted_index.In | 31 |
| abstract_inverted_index.an | 149 |
| abstract_inverted_index.as | 200, 304, 306 |
| abstract_inverted_index.be | 317 |
| abstract_inverted_index.by | 190, 222 |
| abstract_inverted_index.in | 4, 43, 119, 168, 178, 228, 272, 286 |
| abstract_inverted_index.of | 22, 38, 80, 157, 181, 188, 194, 257, 283, 301, 308 |
| abstract_inverted_index.on | 64, 101, 163 |
| abstract_inverted_index.or | 109 |
| abstract_inverted_index.to | 7, 16, 97, 133, 143, 153, 185, 242, 253, 260, 292, 310 |
| abstract_inverted_index.we | 34, 238 |
| abstract_inverted_index.NHS | 182, 223 |
| abstract_inverted_index.SID | 99, 129, 287 |
| abstract_inverted_index.all | 169 |
| abstract_inverted_index.and | 12, 28, 48, 60, 66, 103, 112, 116, 135, 139, 165, 211, 232, 313 |
| abstract_inverted_index.did | 216 |
| abstract_inverted_index.for | 84, 90, 122, 247, 288 |
| abstract_inverted_index.key | 318 |
| abstract_inverted_index.new | 40 |
| abstract_inverted_index.not | 217 |
| abstract_inverted_index.the | 78, 114, 128, 155, 206, 244, 255, 299 |
| abstract_inverted_index.two | 75 |
| abstract_inverted_index.use | 8, 256 |
| abstract_inverted_index.SID, | 207 |
| abstract_inverted_index.They | 125 |
| abstract_inverted_index.able | 241 |
| abstract_inverted_index.been | 240 |
| abstract_inverted_index.care | 14, 62 |
| abstract_inverted_index.code | 176 |
| abstract_inverted_index.data | 63, 81, 88, 130, 137, 158, 167, 183, 236, 259, 274 |
| abstract_inverted_index.each | 85 |
| abstract_inverted_index.gain | 17 |
| abstract_inverted_index.have | 239, 266, 293 |
| abstract_inverted_index.into | 19, 205, 298 |
| abstract_inverted_index.made | 267 |
| abstract_inverted_index.make | 311 |
| abstract_inverted_index.many | 268 |
| abstract_inverted_index.more | 160, 280 |
| abstract_inverted_index.need | 278 |
| abstract_inverted_index.next | 319 |
| abstract_inverted_index.open | 107 |
| abstract_inverted_index.such | 199 |
| abstract_inverted_index.team | 132 |
| abstract_inverted_index.that | 215 |
| abstract_inverted_index.this | 32, 39, 235 |
| abstract_inverted_index.use, | 25, 303 |
| abstract_inverted_index.use. | 295 |
| abstract_inverted_index.well | 305 |
| abstract_inverted_index.were | 173, 197, 226 |
| abstract_inverted_index.will | 316 |
| abstract_inverted_index.with | 106, 140 |
| abstract_inverted_index.(SID) | 56 |
| abstract_inverted_index.being | 203 |
| abstract_inverted_index.data, | 15 |
| abstract_inverted_index.data. | 30 |
| abstract_inverted_index.learn | 144 |
| abstract_inverted_index.lists | 177 |
| abstract_inverted_index.local | 20, 49, 120, 248 |
| abstract_inverted_index.maps, | 231 |
| abstract_inverted_index.match | 218 |
| abstract_inverted_index.newly | 9 |
| abstract_inverted_index.range | 180, 193 |
| abstract_inverted_index.still | 277 |
| abstract_inverted_index.study | 33 |
| abstract_inverted_index.teams | 3, 252 |
| abstract_inverted_index.users | 68 |
| abstract_inverted_index.work. | 124 |
| abstract_inverted_index.During | 71 |
| abstract_inverted_index.Health | 250, 263 |
| abstract_inverted_index.Public | 249, 262 |
| abstract_inverted_index.Sussex | 5, 53 |
| abstract_inverted_index.across | 69 |
| abstract_inverted_index.enable | 186 |
| abstract_inverted_index.future | 123 |
| abstract_inverted_index.health | 1, 11, 59, 290 |
| abstract_inverted_index.inform | 134 |
| abstract_inverted_index.issues | 196, 285 |
| abstract_inverted_index.linked | 10, 41, 258 |
| abstract_inverted_index.needed | 246 |
| abstract_inverted_index.number | 79 |
| abstract_inverted_index.plots, | 230 |
| abstract_inverted_index.public | 289 |
| abstract_inverted_index.report | 35 |
| abstract_inverted_index.social | 13, 61 |
| abstract_inverted_index.source | 108 |
| abstract_inverted_index.steps. | 320 |
| abstract_inverted_index.system | 152 |
| abstract_inverted_index.target | 314 |
| abstract_inverted_index.wanted | 6 |
| abstract_inverted_index.worked | 126 |
| abstract_inverted_index.6-month | 73 |
| abstract_inverted_index.Dataset | 55 |
| abstract_inverted_index.Further | 296 |
| abstract_inverted_index.Results | 225 |
| abstract_inverted_index.Sussex. | 70 |
| abstract_inverted_index.Through | 234 |
| abstract_inverted_index.achieve | 261 |
| abstract_inverted_index.between | 46 |
| abstract_inverted_index.breadth | 156 |
| abstract_inverted_index.compare | 98 |
| abstract_inverted_index.figures | 220 |
| abstract_inverted_index.however | 276 |
| abstract_inverted_index.improve | 136 |
| abstract_inverted_index.initial | 36 |
| abstract_inverted_index.methods | 96 |
| abstract_inverted_index.outputs | 100, 291 |
| abstract_inverted_index.quality | 89, 195, 284 |
| abstract_inverted_index.service | 24, 26, 302 |
| abstract_inverted_index.sources | 82 |
| abstract_inverted_index.through | 175 |
| abstract_inverted_index.analysts | 76 |
| abstract_inverted_index.complete | 281 |
| abstract_inverted_index.dataset, | 42 |
| abstract_inverted_index.digital. | 224 |
| abstract_inverted_index.expected | 110, 219 |
| abstract_inverted_index.focusing | 162 |
| abstract_inverted_index.identify | 243 |
| abstract_inverted_index.insights | 18 |
| abstract_inverted_index.maximise | 254 |
| abstract_inverted_index.patients | 202 |
| abstract_inverted_index.patterns | 21, 300 |
| abstract_inverted_index.practice | 213 |
| abstract_inverted_index.quality, | 275 |
| abstract_inverted_index.quality; | 138 |
| abstract_inverted_index.querying | 151 |
| abstract_inverted_index.required | 118 |
| abstract_inverted_index.services | 67 |
| abstract_inverted_index.sources, | 184 |
| abstract_inverted_index.sources. | 170 |
| abstract_inverted_index.uploaded | 204 |
| abstract_inverted_index.Long-term | 171 |
| abstract_inverted_index.alongside | 127 |
| abstract_inverted_index.analysts. | 51 |
| abstract_inverted_index.authority | 50 |
| abstract_inverted_index.available | 83 |
| abstract_inverted_index.comprises | 57 |
| abstract_inverted_index.condition | 104 |
| abstract_inverted_index.developed | 94 |
| abstract_inverted_index.efficient | 150 |
| abstract_inverted_index.evaluated | 77, 87 |
| abstract_inverted_index.long-term | 92 |
| abstract_inverted_index.modelling | 307 |
| abstract_inverted_index.provision | 27 |
| abstract_inverted_index.published | 221 |
| abstract_inverted_index.residents | 65 |
| abstract_inverted_index.Integrated | 54 |
| abstract_inverted_index.available, | 159 |
| abstract_inverted_index.conceptual | 269 |
| abstract_inverted_index.conditions | 172 |
| abstract_inverted_index.distorting | 208 |
| abstract_inverted_index.encounters | 164 |
| abstract_inverted_index.estimates, | 210 |
| abstract_inverted_index.identified | 113, 174 |
| abstract_inverted_index.meaningful | 294 |
| abstract_inverted_index.modelling. | 146 |
| abstract_inverted_index.prediction | 145 |
| abstract_inverted_index.prevalence | 105, 209 |
| abstract_inverted_index.processing | 131 |
| abstract_inverted_index.skills-mix | 115, 245 |
| abstract_inverted_index.thoroughly | 161 |
| abstract_inverted_index.university | 47, 141 |
| abstract_inverted_index.ApproachThe | 52 |
| abstract_inverted_index.authorities | 121 |
| abstract_inverted_index.conditions, | 93 |
| abstract_inverted_index.demographic | 166 |
| abstract_inverted_index.established | 148 |
| abstract_inverted_index.exploration | 37 |
| abstract_inverted_index.identified, | 198 |
| abstract_inverted_index.identifying | 91 |
| abstract_inverted_index.individual, | 86 |
| abstract_inverted_index.investigate | 154 |
| abstract_inverted_index.non-current | 201 |
| abstract_inverted_index.objectives. | 264 |
| abstract_inverted_index.partnership | 45 |
| abstract_inverted_index.populations | 214 |
| abstract_inverted_index.predictions | 312 |
| abstract_inverted_index.represented | 227 |
| abstract_inverted_index.secondment, | 74 |
| abstract_inverted_index.theographs. | 233 |
| abstract_inverted_index.ConclusionWe | 265 |
| abstract_inverted_index.Intelligence | 251 |
| abstract_inverted_index.demographic. | 191 |
| abstract_inverted_index.demographics | 102 |
| abstract_inverted_index.exploration, | 237 |
| abstract_inverted_index.intelligence | 2 |
| abstract_inverted_index.particularly | 271 |
| abstract_inverted_index.person-level | 58 |
| abstract_inverted_index.presentation | 95 |
| abstract_inverted_index.consideration | 187 |
| abstract_inverted_index.investigation | 297 |
| abstract_inverted_index.understanding | 273, 282 |
| abstract_inverted_index.breakthroughs, | 270 |
| abstract_inverted_index.distributions, | 111 |
| abstract_inverted_index.infrastructure | 117 |
| abstract_inverted_index.interventions, | 315 |
| abstract_inverted_index.ResultsAnalysts | 147 |
| abstract_inverted_index.data-scientists | 142 |
| abstract_inverted_index.multi-morbidity | 189, 229, 309 |
| abstract_inverted_index.ObjectivesPublic | 0 |
| abstract_inverted_index.multi-morbidity, | 23 |
| abstract_inverted_index.socio-demographic | 29 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/17 |
| sustainable_development_goals[0].score | 0.44999998807907104 |
| sustainable_development_goals[0].display_name | Partnerships for the goals |
| sustainable_development_goals[1].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[1].score | 0.4000000059604645 |
| sustainable_development_goals[1].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.17537384 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |