Exploring AI-Driven Machine Learning Approaches for Optimal Classification of Peri-Implantitis Based on Oral Microbiome Data: A Feasibility Study Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.20944/preprints202501.0529.v1
Background: Machine-learning (ML) techniques have been recently proposed as a solution for aiding in the prevention and diagnosis of microbiome-related diseases. Here, we applied auto-ML approaches on real-case metagenomic datasets from saliva and subgingival peri-implant biofilm microbiomes to explore a wide range of ML algorithms to benchmark best-performing algorithms for predicting peri-implantitis (PI). Methods: A total of 100 metagenomes from the NCBI SRA database (PRJNA1163384) were used in this study to construct biofilm and saliva metagenomes datasets. Two AI-driven auto-ML approaches were used on constructed datasets to generate 100 ML-based models for the prediction of PI. These were compared with statistically significant single microorganism-based models. Results: Several ML algorithms were pinpointed as suitable bespoke predictive approaches to apply to metagenomic data, outperforming the single microorganism-based classification. Auto-ML approaches rendered high-performing models with AUC values, sensitivities and specificities between 80% and 100%. Among these, classifiers based on ML-driven scoring of combinations of 2-4 microorganisms presented top-ranked performances and can be suitable for clinical application. Moreover, models generated based on the saliva microbiome showed higher predictive performance than those from the biofilm microbiome. Conclusions: This feasibility study bridges complex AI research with practical dental applications by benchmarking ML algorithms and exploring oral microbiomes as foundations for developing intuitive, cost-effective, and clinically relevant diagnostic platforms.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.20944/preprints202501.0529.v1
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406184956
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406184956Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.20944/preprints202501.0529.v1Digital Object Identifier
- Title
-
Exploring AI-Driven Machine Learning Approaches for Optimal Classification of Peri-Implantitis Based on Oral Microbiome Data: A Feasibility StudyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-07Full publication date if available
- Authors
-
Ricardo Jorge Pais, João Botelho, Vanessa Machado, Gil Alcoforado, José João Mendes, Ricardo Alves, Lucinda J. BessaList of authors in order
- Landing page
-
https://doi.org/10.20944/preprints202501.0529.v1Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.20944/preprints202501.0529.v1Direct OA link when available
- Concepts
-
Peri-implantitis, Microbiome, Computer science, Artificial intelligence, Machine learning, Data science, Medicine, Biology, Bioinformatics, Surgery, ImplantTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406184956 |
|---|---|
| doi | https://doi.org/10.20944/preprints202501.0529.v1 |
| ids.doi | https://doi.org/10.20944/preprints202501.0529.v1 |
| ids.openalex | https://openalex.org/W4406184956 |
| fwci | 0.0 |
| type | preprint |
| title | Exploring AI-Driven Machine Learning Approaches for Optimal Classification of Peri-Implantitis Based on Oral Microbiome Data: A Feasibility Study |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10359 |
| topics[0].field.id | https://openalex.org/fields/35 |
| topics[0].field.display_name | Dentistry |
| topics[0].score | 0.9987000226974487 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3504 |
| topics[0].subfield.display_name | Oral Surgery |
| topics[0].display_name | Dental Implant Techniques and Outcomes |
| topics[1].id | https://openalex.org/T10257 |
| topics[1].field.id | https://openalex.org/fields/35 |
| topics[1].field.display_name | Dentistry |
| topics[1].score | 0.9908000230789185 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3506 |
| topics[1].subfield.display_name | Periodontics |
| topics[1].display_name | Oral microbiology and periodontitis research |
| topics[2].id | https://openalex.org/T11363 |
| topics[2].field.id | https://openalex.org/fields/35 |
| topics[2].field.display_name | Dentistry |
| topics[2].score | 0.9879999756813049 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3504 |
| topics[2].subfield.display_name | Oral Surgery |
| topics[2].display_name | Dental Radiography and Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780802913 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8227545022964478 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q601168 |
| concepts[0].display_name | Peri-implantitis |
| concepts[1].id | https://openalex.org/C143121216 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6491586565971375 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1330402 |
| concepts[1].display_name | Microbiome |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5621499419212341 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.493101567029953 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4105520248413086 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C2522767166 |
| concepts[5].level | 1 |
| concepts[5].score | 0.33400624990463257 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[5].display_name | Data science |
| concepts[6].id | https://openalex.org/C71924100 |
| concepts[6].level | 0 |
| concepts[6].score | 0.25236624479293823 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[6].display_name | Medicine |
| concepts[7].id | https://openalex.org/C86803240 |
| concepts[7].level | 0 |
| concepts[7].score | 0.13517040014266968 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[7].display_name | Biology |
| concepts[8].id | https://openalex.org/C60644358 |
| concepts[8].level | 1 |
| concepts[8].score | 0.13500860333442688 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q128570 |
| concepts[8].display_name | Bioinformatics |
| concepts[9].id | https://openalex.org/C141071460 |
| concepts[9].level | 1 |
| concepts[9].score | 0.06038293242454529 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q40821 |
| concepts[9].display_name | Surgery |
| concepts[10].id | https://openalex.org/C2781411149 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q486975 |
| concepts[10].display_name | Implant |
| keywords[0].id | https://openalex.org/keywords/peri-implantitis |
| keywords[0].score | 0.8227545022964478 |
| keywords[0].display_name | Peri-implantitis |
| keywords[1].id | https://openalex.org/keywords/microbiome |
| keywords[1].score | 0.6491586565971375 |
| keywords[1].display_name | Microbiome |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5621499419212341 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.493101567029953 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.4105520248413086 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/data-science |
| keywords[5].score | 0.33400624990463257 |
| keywords[5].display_name | Data science |
| keywords[6].id | https://openalex.org/keywords/medicine |
| keywords[6].score | 0.25236624479293823 |
| keywords[6].display_name | Medicine |
| keywords[7].id | https://openalex.org/keywords/biology |
| keywords[7].score | 0.13517040014266968 |
| keywords[7].display_name | Biology |
| keywords[8].id | https://openalex.org/keywords/bioinformatics |
| keywords[8].score | 0.13500860333442688 |
| keywords[8].display_name | Bioinformatics |
| keywords[9].id | https://openalex.org/keywords/surgery |
| keywords[9].score | 0.06038293242454529 |
| keywords[9].display_name | Surgery |
| language | en |
| locations[0].id | doi:10.20944/preprints202501.0529.v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S6309402219 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Preprints.org |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.20944/preprints202501.0529.v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5067248368 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5489-8790 |
| authorships[0].author.display_name | Ricardo Jorge Pais |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ricardo Jorge Pais |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5057859852 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1019-8263 |
| authorships[1].author.display_name | João Botelho |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | João Botelho |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5032617707 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2503-260X |
| authorships[2].author.display_name | Vanessa Machado |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Vanessa Machado |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5075324707 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1545-2267 |
| authorships[3].author.display_name | Gil Alcoforado |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Gil Alcoforado |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5050131222 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0167-4077 |
| authorships[4].author.display_name | José João Mendes |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | José João Mendes |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5006695693 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7184-5965 |
| authorships[5].author.display_name | Ricardo Alves |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ricardo Alves |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5081265166 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8339-1964 |
| authorships[6].author.display_name | Lucinda J. Bessa |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Lucinda J. Bessa |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.20944/preprints202501.0529.v1 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Exploring AI-Driven Machine Learning Approaches for Optimal Classification of Peri-Implantitis Based on Oral Microbiome Data: A Feasibility Study |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10359 |
| primary_topic.field.id | https://openalex.org/fields/35 |
| primary_topic.field.display_name | Dentistry |
| primary_topic.score | 0.9987000226974487 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3504 |
| primary_topic.subfield.display_name | Oral Surgery |
| primary_topic.display_name | Dental Implant Techniques and Outcomes |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4387369504, https://openalex.org/W3046775127, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.20944/preprints202501.0529.v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S6309402219 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Preprints.org |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.20944/preprints202501.0529.v1 |
| primary_location.id | doi:10.20944/preprints202501.0529.v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S6309402219 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Preprints.org |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.20944/preprints202501.0529.v1 |
| publication_date | 2025-01-07 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 54 |
| abstract_inverted_index.a | 9, 39 |
| abstract_inverted_index.AI | 187 |
| abstract_inverted_index.ML | 43, 107, 195 |
| abstract_inverted_index.as | 8, 111, 201 |
| abstract_inverted_index.be | 158 |
| abstract_inverted_index.by | 193 |
| abstract_inverted_index.in | 13, 67 |
| abstract_inverted_index.of | 18, 42, 56, 94, 148, 150 |
| abstract_inverted_index.on | 26, 83, 145, 167 |
| abstract_inverted_index.to | 37, 45, 70, 86, 116, 118 |
| abstract_inverted_index.we | 22 |
| abstract_inverted_index.100 | 57, 88 |
| abstract_inverted_index.2-4 | 151 |
| abstract_inverted_index.80% | 138 |
| abstract_inverted_index.AUC | 132 |
| abstract_inverted_index.PI. | 95 |
| abstract_inverted_index.SRA | 62 |
| abstract_inverted_index.Two | 77 |
| abstract_inverted_index.and | 16, 32, 73, 135, 139, 156, 197, 207 |
| abstract_inverted_index.can | 157 |
| abstract_inverted_index.for | 11, 49, 91, 160, 203 |
| abstract_inverted_index.the | 14, 60, 92, 122, 168, 178 |
| abstract_inverted_index.(ML) | 2 |
| abstract_inverted_index.NCBI | 61 |
| abstract_inverted_index.This | 182 |
| abstract_inverted_index.been | 5 |
| abstract_inverted_index.from | 30, 59, 177 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.oral | 199 |
| abstract_inverted_index.than | 175 |
| abstract_inverted_index.this | 68 |
| abstract_inverted_index.used | 66, 82 |
| abstract_inverted_index.were | 65, 81, 97, 109 |
| abstract_inverted_index.wide | 40 |
| abstract_inverted_index.with | 99, 131, 189 |
| abstract_inverted_index.(PI). | 52 |
| abstract_inverted_index.100%. | 140 |
| abstract_inverted_index.Among | 141 |
| abstract_inverted_index.Here, | 21 |
| abstract_inverted_index.These | 96 |
| abstract_inverted_index.apply | 117 |
| abstract_inverted_index.based | 144, 166 |
| abstract_inverted_index.data, | 120 |
| abstract_inverted_index.range | 41 |
| abstract_inverted_index.study | 69, 184 |
| abstract_inverted_index.those | 176 |
| abstract_inverted_index.total | 55 |
| abstract_inverted_index.aiding | 12 |
| abstract_inverted_index.dental | 191 |
| abstract_inverted_index.higher | 172 |
| abstract_inverted_index.models | 90, 130, 164 |
| abstract_inverted_index.saliva | 31, 74, 169 |
| abstract_inverted_index.showed | 171 |
| abstract_inverted_index.single | 102, 123 |
| abstract_inverted_index.these, | 142 |
| abstract_inverted_index.Auto-ML | 126 |
| abstract_inverted_index.Several | 106 |
| abstract_inverted_index.applied | 23 |
| abstract_inverted_index.auto-ML | 24, 79 |
| abstract_inverted_index.bespoke | 113 |
| abstract_inverted_index.between | 137 |
| abstract_inverted_index.biofilm | 35, 72, 179 |
| abstract_inverted_index.bridges | 185 |
| abstract_inverted_index.complex | 186 |
| abstract_inverted_index.explore | 38 |
| abstract_inverted_index.models. | 104 |
| abstract_inverted_index.scoring | 147 |
| abstract_inverted_index.values, | 133 |
| abstract_inverted_index.ML-based | 89 |
| abstract_inverted_index.Methods: | 53 |
| abstract_inverted_index.Results: | 105 |
| abstract_inverted_index.clinical | 161 |
| abstract_inverted_index.compared | 98 |
| abstract_inverted_index.database | 63 |
| abstract_inverted_index.datasets | 29, 85 |
| abstract_inverted_index.generate | 87 |
| abstract_inverted_index.proposed | 7 |
| abstract_inverted_index.recently | 6 |
| abstract_inverted_index.relevant | 209 |
| abstract_inverted_index.rendered | 128 |
| abstract_inverted_index.research | 188 |
| abstract_inverted_index.solution | 10 |
| abstract_inverted_index.suitable | 112, 159 |
| abstract_inverted_index.AI-driven | 78 |
| abstract_inverted_index.ML-driven | 146 |
| abstract_inverted_index.Moreover, | 163 |
| abstract_inverted_index.benchmark | 46 |
| abstract_inverted_index.construct | 71 |
| abstract_inverted_index.datasets. | 76 |
| abstract_inverted_index.diagnosis | 17 |
| abstract_inverted_index.diseases. | 20 |
| abstract_inverted_index.exploring | 198 |
| abstract_inverted_index.generated | 165 |
| abstract_inverted_index.practical | 190 |
| abstract_inverted_index.presented | 153 |
| abstract_inverted_index.real-case | 27 |
| abstract_inverted_index.algorithms | 44, 48, 108, 196 |
| abstract_inverted_index.approaches | 25, 80, 115, 127 |
| abstract_inverted_index.clinically | 208 |
| abstract_inverted_index.developing | 204 |
| abstract_inverted_index.diagnostic | 210 |
| abstract_inverted_index.intuitive, | 205 |
| abstract_inverted_index.microbiome | 170 |
| abstract_inverted_index.pinpointed | 110 |
| abstract_inverted_index.platforms. | 211 |
| abstract_inverted_index.predicting | 50 |
| abstract_inverted_index.prediction | 93 |
| abstract_inverted_index.predictive | 114, 173 |
| abstract_inverted_index.prevention | 15 |
| abstract_inverted_index.techniques | 3 |
| abstract_inverted_index.top-ranked | 154 |
| abstract_inverted_index.Background: | 0 |
| abstract_inverted_index.classifiers | 143 |
| abstract_inverted_index.constructed | 84 |
| abstract_inverted_index.feasibility | 183 |
| abstract_inverted_index.foundations | 202 |
| abstract_inverted_index.metagenomes | 58, 75 |
| abstract_inverted_index.metagenomic | 28, 119 |
| abstract_inverted_index.microbiome. | 180 |
| abstract_inverted_index.microbiomes | 36, 200 |
| abstract_inverted_index.performance | 174 |
| abstract_inverted_index.significant | 101 |
| abstract_inverted_index.subgingival | 33 |
| abstract_inverted_index.Conclusions: | 181 |
| abstract_inverted_index.application. | 162 |
| abstract_inverted_index.applications | 192 |
| abstract_inverted_index.benchmarking | 194 |
| abstract_inverted_index.combinations | 149 |
| abstract_inverted_index.performances | 155 |
| abstract_inverted_index.peri-implant | 34 |
| abstract_inverted_index.outperforming | 121 |
| abstract_inverted_index.sensitivities | 134 |
| abstract_inverted_index.specificities | 136 |
| abstract_inverted_index.statistically | 100 |
| abstract_inverted_index.(PRJNA1163384) | 64 |
| abstract_inverted_index.microorganisms | 152 |
| abstract_inverted_index.best-performing | 47 |
| abstract_inverted_index.classification. | 125 |
| abstract_inverted_index.cost-effective, | 206 |
| abstract_inverted_index.high-performing | 129 |
| abstract_inverted_index.Machine-learning | 1 |
| abstract_inverted_index.peri-implantitis | 51 |
| abstract_inverted_index.microbiome-related | 19 |
| abstract_inverted_index.microorganism-based | 103, 124 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.00911541 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |