Exploring Audio Editing Features as User-Centric Privacy Defenses Against Large Language Model(LLM) Based Emotion Inference Attacks Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2501.18727
The rapid proliferation of speech-enabled technologies, including virtual assistants, video conferencing platforms, and wearable devices, has raised significant privacy concerns, particularly regarding the inference of sensitive emotional information from audio data. Existing privacy-preserving methods often compromise usability and security, limiting their adoption in practical scenarios. This paper introduces a novel, user-centric approach that leverages familiar audio editing techniques, specifically pitch and tempo manipulation, to protect emotional privacy without sacrificing usability. By analyzing popular audio editing applications on Android and iOS platforms, we identified these features as both widely available and usable. We rigorously evaluated their effectiveness against a threat model, considering adversarial attacks from diverse sources, including Deep Neural Networks (DNNs), Large Language Models (LLMs), and and reversibility testing. Our experiments, conducted on three distinct datasets, demonstrate that pitch and tempo manipulation effectively obfuscates emotional data. Additionally, we explore the design principles for lightweight, on-device implementation to ensure broad applicability across various devices and platforms.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2501.18727
- https://arxiv.org/pdf/2501.18727
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407092942
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407092942Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2501.18727Digital Object Identifier
- Title
-
Exploring Audio Editing Features as User-Centric Privacy Defenses Against Large Language Model(LLM) Based Emotion Inference AttacksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-30Full publication date if available
- Authors
-
Mohd. Farhan Israk Soumik, W.K.M Mithsara, Abdur R. Shahid, Ahmed ImteajList of authors in order
- Landing page
-
https://arxiv.org/abs/2501.18727Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2501.18727Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2501.18727Direct OA link when available
- Concepts
-
Inference, Computer science, Internet privacy, Computer security, Human–computer interaction, World Wide Web, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407092942 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2501.18727 |
| ids.doi | https://doi.org/10.48550/arxiv.2501.18727 |
| ids.openalex | https://openalex.org/W4407092942 |
| fwci | |
| type | preprint |
| title | Exploring Audio Editing Features as User-Centric Privacy Defenses Against Large Language Model(LLM) Based Emotion Inference Attacks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12262 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9740999937057495 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Hate Speech and Cyberbullying Detection |
| topics[1].id | https://openalex.org/T11045 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9549999833106995 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3312 |
| topics[1].subfield.display_name | Sociology and Political Science |
| topics[1].display_name | Privacy, Security, and Data Protection |
| topics[2].id | https://openalex.org/T13999 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9476000070571899 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Digital Rights Management and Security |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776214188 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7294813394546509 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[0].display_name | Inference |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6460575461387634 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C108827166 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5257657170295715 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q175975 |
| concepts[2].display_name | Internet privacy |
| concepts[3].id | https://openalex.org/C38652104 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4666709005832672 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[3].display_name | Computer security |
| concepts[4].id | https://openalex.org/C107457646 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4217483401298523 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[4].display_name | Human–computer interaction |
| concepts[5].id | https://openalex.org/C136764020 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3564611077308655 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[5].display_name | World Wide Web |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.20047909021377563 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/inference |
| keywords[0].score | 0.7294813394546509 |
| keywords[0].display_name | Inference |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6460575461387634 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/internet-privacy |
| keywords[2].score | 0.5257657170295715 |
| keywords[2].display_name | Internet privacy |
| keywords[3].id | https://openalex.org/keywords/computer-security |
| keywords[3].score | 0.4666709005832672 |
| keywords[3].display_name | Computer security |
| keywords[4].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[4].score | 0.4217483401298523 |
| keywords[4].display_name | Human–computer interaction |
| keywords[5].id | https://openalex.org/keywords/world-wide-web |
| keywords[5].score | 0.3564611077308655 |
| keywords[5].display_name | World Wide Web |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.20047909021377563 |
| keywords[6].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2501.18727 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2501.18727 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2501.18727 |
| locations[1].id | doi:10.48550/arxiv.2501.18727 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2501.18727 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5116129714 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Mohd. Farhan Israk Soumik |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Soumik, Mohd. Farhan Israk |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5020137300 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | W.K.M Mithsara |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mithsara, W. K. M. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5035192689 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3168-8907 |
| authorships[2].author.display_name | Abdur R. Shahid |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shahid, Abdur R. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5077711449 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6975-3997 |
| authorships[3].author.display_name | Ahmed Imteaj |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Imteaj, Ahmed |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2501.18727 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-02-04T00:00:00 |
| display_name | Exploring Audio Editing Features as User-Centric Privacy Defenses Against Large Language Model(LLM) Based Emotion Inference Attacks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12262 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9740999937057495 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Hate Speech and Cyberbullying Detection |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2055243143, https://openalex.org/W1986418932, https://openalex.org/W2357796999, https://openalex.org/W4321636575, https://openalex.org/W2741131631, https://openalex.org/W2045526782, https://openalex.org/W4405841813, https://openalex.org/W2156919374, https://openalex.org/W1483472507 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2501.18727 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2501.18727 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2501.18727 |
| primary_location.id | pmh:oai:arXiv.org:2501.18727 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2501.18727 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2501.18727 |
| publication_date | 2025-01-30 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 48, 97 |
| abstract_inverted_index.By | 70 |
| abstract_inverted_index.We | 91 |
| abstract_inverted_index.as | 85 |
| abstract_inverted_index.in | 42 |
| abstract_inverted_index.of | 3, 24 |
| abstract_inverted_index.on | 76, 122 |
| abstract_inverted_index.to | 63, 146 |
| abstract_inverted_index.we | 81, 137 |
| abstract_inverted_index.Our | 119 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 12, 37, 60, 78, 89, 115, 116, 129, 153 |
| abstract_inverted_index.for | 142 |
| abstract_inverted_index.has | 15 |
| abstract_inverted_index.iOS | 79 |
| abstract_inverted_index.the | 22, 139 |
| abstract_inverted_index.Deep | 107 |
| abstract_inverted_index.This | 45 |
| abstract_inverted_index.both | 86 |
| abstract_inverted_index.from | 28, 103 |
| abstract_inverted_index.that | 52, 127 |
| abstract_inverted_index.Large | 111 |
| abstract_inverted_index.audio | 29, 55, 73 |
| abstract_inverted_index.broad | 148 |
| abstract_inverted_index.data. | 30, 135 |
| abstract_inverted_index.often | 34 |
| abstract_inverted_index.paper | 46 |
| abstract_inverted_index.pitch | 59, 128 |
| abstract_inverted_index.rapid | 1 |
| abstract_inverted_index.tempo | 61, 130 |
| abstract_inverted_index.their | 40, 94 |
| abstract_inverted_index.these | 83 |
| abstract_inverted_index.three | 123 |
| abstract_inverted_index.video | 9 |
| abstract_inverted_index.Models | 113 |
| abstract_inverted_index.Neural | 108 |
| abstract_inverted_index.across | 150 |
| abstract_inverted_index.design | 140 |
| abstract_inverted_index.ensure | 147 |
| abstract_inverted_index.model, | 99 |
| abstract_inverted_index.novel, | 49 |
| abstract_inverted_index.raised | 16 |
| abstract_inverted_index.threat | 98 |
| abstract_inverted_index.widely | 87 |
| abstract_inverted_index.(DNNs), | 110 |
| abstract_inverted_index.(LLMs), | 114 |
| abstract_inverted_index.Android | 77 |
| abstract_inverted_index.against | 96 |
| abstract_inverted_index.attacks | 102 |
| abstract_inverted_index.devices | 152 |
| abstract_inverted_index.diverse | 104 |
| abstract_inverted_index.editing | 56, 74 |
| abstract_inverted_index.explore | 138 |
| abstract_inverted_index.methods | 33 |
| abstract_inverted_index.popular | 72 |
| abstract_inverted_index.privacy | 18, 66 |
| abstract_inverted_index.protect | 64 |
| abstract_inverted_index.usable. | 90 |
| abstract_inverted_index.various | 151 |
| abstract_inverted_index.virtual | 7 |
| abstract_inverted_index.without | 67 |
| abstract_inverted_index.Existing | 31 |
| abstract_inverted_index.Language | 112 |
| abstract_inverted_index.Networks | 109 |
| abstract_inverted_index.adoption | 41 |
| abstract_inverted_index.approach | 51 |
| abstract_inverted_index.devices, | 14 |
| abstract_inverted_index.distinct | 124 |
| abstract_inverted_index.familiar | 54 |
| abstract_inverted_index.features | 84 |
| abstract_inverted_index.limiting | 39 |
| abstract_inverted_index.sources, | 105 |
| abstract_inverted_index.testing. | 118 |
| abstract_inverted_index.wearable | 13 |
| abstract_inverted_index.analyzing | 71 |
| abstract_inverted_index.available | 88 |
| abstract_inverted_index.concerns, | 19 |
| abstract_inverted_index.conducted | 121 |
| abstract_inverted_index.datasets, | 125 |
| abstract_inverted_index.emotional | 26, 65, 134 |
| abstract_inverted_index.evaluated | 93 |
| abstract_inverted_index.including | 6, 106 |
| abstract_inverted_index.inference | 23 |
| abstract_inverted_index.leverages | 53 |
| abstract_inverted_index.on-device | 144 |
| abstract_inverted_index.practical | 43 |
| abstract_inverted_index.regarding | 21 |
| abstract_inverted_index.security, | 38 |
| abstract_inverted_index.sensitive | 25 |
| abstract_inverted_index.usability | 36 |
| abstract_inverted_index.compromise | 35 |
| abstract_inverted_index.identified | 82 |
| abstract_inverted_index.introduces | 47 |
| abstract_inverted_index.obfuscates | 133 |
| abstract_inverted_index.platforms, | 11, 80 |
| abstract_inverted_index.platforms. | 154 |
| abstract_inverted_index.principles | 141 |
| abstract_inverted_index.rigorously | 92 |
| abstract_inverted_index.scenarios. | 44 |
| abstract_inverted_index.usability. | 69 |
| abstract_inverted_index.adversarial | 101 |
| abstract_inverted_index.assistants, | 8 |
| abstract_inverted_index.considering | 100 |
| abstract_inverted_index.demonstrate | 126 |
| abstract_inverted_index.effectively | 132 |
| abstract_inverted_index.information | 27 |
| abstract_inverted_index.sacrificing | 68 |
| abstract_inverted_index.significant | 17 |
| abstract_inverted_index.techniques, | 57 |
| abstract_inverted_index.applications | 75 |
| abstract_inverted_index.conferencing | 10 |
| abstract_inverted_index.experiments, | 120 |
| abstract_inverted_index.lightweight, | 143 |
| abstract_inverted_index.manipulation | 131 |
| abstract_inverted_index.particularly | 20 |
| abstract_inverted_index.specifically | 58 |
| abstract_inverted_index.user-centric | 50 |
| abstract_inverted_index.Additionally, | 136 |
| abstract_inverted_index.applicability | 149 |
| abstract_inverted_index.effectiveness | 95 |
| abstract_inverted_index.manipulation, | 62 |
| abstract_inverted_index.proliferation | 2 |
| abstract_inverted_index.reversibility | 117 |
| abstract_inverted_index.technologies, | 5 |
| abstract_inverted_index.implementation | 145 |
| abstract_inverted_index.speech-enabled | 4 |
| abstract_inverted_index.privacy-preserving | 32 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |