Exploring Color Invariance through Image-Level Ensemble Learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2401.10512
In the field of computer vision, the persistent presence of color bias, resulting from fluctuations in real-world lighting and camera conditions, presents a substantial challenge to the robustness of models. This issue is particularly pronounced in complex wide-area surveillance scenarios, such as person re-identification and industrial dust segmentation, where models often experience a decline in performance due to overfitting on color information during training, given the presence of environmental variations. Consequently, there is a need to effectively adapt models to cope with the complexities of camera conditions. To address this challenge, this study introduces a learning strategy named Random Color Erasing, which draws inspiration from ensemble learning. This strategy selectively erases partial or complete color information in the training data without disrupting the original image structure, thereby achieving a balanced weighting of color features and other features within the neural network. This approach mitigates the risk of overfitting and enhances the model's ability to handle color variation, thereby improving its overall robustness. The approach we propose serves as an ensemble learning strategy, characterized by robust interpretability. A comprehensive analysis of this methodology is presented in this paper. Across various tasks such as person re-identification and semantic segmentation, our approach consistently improves strong baseline methods. Notably, in comparison to existing methods that prioritize color robustness, our strategy significantly enhances performance in cross-domain scenarios. The code available at \url{https://github.com/layumi/Person\_reID\_baseline\_pytorch/blob/master/random\_erasing.py} or \url{https://github.com/finger-monkey/Data-Augmentation}.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2401.10512
- https://arxiv.org/pdf/2401.10512
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391124025
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391124025Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2401.10512Digital Object Identifier
- Title
-
Exploring Color Invariance through Image-Level Ensemble LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-19Full publication date if available
- Authors
-
Yunpeng Gong, Jiaquan Li, Lifei Chen, Min JiangList of authors in order
- Landing page
-
https://arxiv.org/abs/2401.10512Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2401.10512Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2401.10512Direct OA link when available
- Concepts
-
Overfitting, Computer science, Robustness (evolution), Artificial intelligence, Interpretability, Ensemble learning, Machine learning, Random forest, Weighting, Deep learning, Segmentation, Ensemble forecasting, Code (set theory), Pattern recognition (psychology), Computer vision, Artificial neural network, Medicine, Programming language, Gene, Biochemistry, Radiology, Set (abstract data type), ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391124025 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2401.10512 |
| ids.doi | https://doi.org/10.48550/arxiv.2401.10512 |
| ids.openalex | https://openalex.org/W4391124025 |
| fwci | |
| type | preprint |
| title | Exploring Color Invariance through Image-Level Ensemble Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10331 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.998199999332428 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Video Surveillance and Tracking Methods |
| topics[1].id | https://openalex.org/T11019 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9817000031471252 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image Enhancement Techniques |
| topics[2].id | https://openalex.org/T10689 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9764999747276306 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Remote-Sensing Image Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C22019652 |
| concepts[0].level | 3 |
| concepts[0].score | 0.830859363079071 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q331309 |
| concepts[0].display_name | Overfitting |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7663901448249817 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C63479239 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7545721530914307 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[2].display_name | Robustness (evolution) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.7295944690704346 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2781067378 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6014344692230225 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[4].display_name | Interpretability |
| concepts[5].id | https://openalex.org/C45942800 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5894821286201477 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q245652 |
| concepts[5].display_name | Ensemble learning |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5697484016418457 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C169258074 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5472166538238525 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[7].display_name | Random forest |
| concepts[8].id | https://openalex.org/C183115368 |
| concepts[8].level | 2 |
| concepts[8].score | 0.49802398681640625 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q856577 |
| concepts[8].display_name | Weighting |
| concepts[9].id | https://openalex.org/C108583219 |
| concepts[9].level | 2 |
| concepts[9].score | 0.45332401990890503 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[9].display_name | Deep learning |
| concepts[10].id | https://openalex.org/C89600930 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4413289725780487 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[10].display_name | Segmentation |
| concepts[11].id | https://openalex.org/C119898033 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4319283664226532 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3433888 |
| concepts[11].display_name | Ensemble forecasting |
| concepts[12].id | https://openalex.org/C2776760102 |
| concepts[12].level | 3 |
| concepts[12].score | 0.43062007427215576 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[12].display_name | Code (set theory) |
| concepts[13].id | https://openalex.org/C153180895 |
| concepts[13].level | 2 |
| concepts[13].score | 0.34024882316589355 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[13].display_name | Pattern recognition (psychology) |
| concepts[14].id | https://openalex.org/C31972630 |
| concepts[14].level | 1 |
| concepts[14].score | 0.32603567838668823 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[14].display_name | Computer vision |
| concepts[15].id | https://openalex.org/C50644808 |
| concepts[15].level | 2 |
| concepts[15].score | 0.2371809184551239 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[15].display_name | Artificial neural network |
| concepts[16].id | https://openalex.org/C71924100 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[16].display_name | Medicine |
| concepts[17].id | https://openalex.org/C199360897 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[17].display_name | Programming language |
| concepts[18].id | https://openalex.org/C104317684 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[18].display_name | Gene |
| concepts[19].id | https://openalex.org/C55493867 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[19].display_name | Biochemistry |
| concepts[20].id | https://openalex.org/C126838900 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[20].display_name | Radiology |
| concepts[21].id | https://openalex.org/C177264268 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[21].display_name | Set (abstract data type) |
| concepts[22].id | https://openalex.org/C185592680 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[22].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/overfitting |
| keywords[0].score | 0.830859363079071 |
| keywords[0].display_name | Overfitting |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7663901448249817 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/robustness |
| keywords[2].score | 0.7545721530914307 |
| keywords[2].display_name | Robustness (evolution) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.7295944690704346 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/interpretability |
| keywords[4].score | 0.6014344692230225 |
| keywords[4].display_name | Interpretability |
| keywords[5].id | https://openalex.org/keywords/ensemble-learning |
| keywords[5].score | 0.5894821286201477 |
| keywords[5].display_name | Ensemble learning |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.5697484016418457 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/random-forest |
| keywords[7].score | 0.5472166538238525 |
| keywords[7].display_name | Random forest |
| keywords[8].id | https://openalex.org/keywords/weighting |
| keywords[8].score | 0.49802398681640625 |
| keywords[8].display_name | Weighting |
| keywords[9].id | https://openalex.org/keywords/deep-learning |
| keywords[9].score | 0.45332401990890503 |
| keywords[9].display_name | Deep learning |
| keywords[10].id | https://openalex.org/keywords/segmentation |
| keywords[10].score | 0.4413289725780487 |
| keywords[10].display_name | Segmentation |
| keywords[11].id | https://openalex.org/keywords/ensemble-forecasting |
| keywords[11].score | 0.4319283664226532 |
| keywords[11].display_name | Ensemble forecasting |
| keywords[12].id | https://openalex.org/keywords/code |
| keywords[12].score | 0.43062007427215576 |
| keywords[12].display_name | Code (set theory) |
| keywords[13].id | https://openalex.org/keywords/pattern-recognition |
| keywords[13].score | 0.34024882316589355 |
| keywords[13].display_name | Pattern recognition (psychology) |
| keywords[14].id | https://openalex.org/keywords/computer-vision |
| keywords[14].score | 0.32603567838668823 |
| keywords[14].display_name | Computer vision |
| keywords[15].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[15].score | 0.2371809184551239 |
| keywords[15].display_name | Artificial neural network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2401.10512 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2401.10512 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2401.10512 |
| locations[1].id | doi:10.48550/arxiv.2401.10512 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2401.10512 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5026737465 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6498-2555 |
| authorships[0].author.display_name | Yunpeng Gong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gong, Yunpeng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5103101264 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6534-2210 |
| authorships[1].author.display_name | Jiaquan Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Jiaquan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5091369584 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3568-8899 |
| authorships[2].author.display_name | Lifei Chen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chen, Lifei |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5084874924 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1035-9776 |
| authorships[3].author.display_name | Min Jiang |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Jiang, Min |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2401.10512 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Exploring Color Invariance through Image-Level Ensemble Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10331 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.998199999332428 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Video Surveillance and Tracking Methods |
| related_works | https://openalex.org/W4361806667, https://openalex.org/W1038900426, https://openalex.org/W2944292463, https://openalex.org/W3014252901, https://openalex.org/W2188759683, https://openalex.org/W2794896638, https://openalex.org/W4317376680, https://openalex.org/W3080944905, https://openalex.org/W4360777922, https://openalex.org/W2891633941 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2401.10512 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2401.10512 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2401.10512 |
| primary_location.id | pmh:oai:arXiv.org:2401.10512 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2401.10512 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2401.10512 |
| publication_date | 2024-01-19 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 176 |
| abstract_inverted_index.a | 22, 52, 73, 94, 128 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.To | 87 |
| abstract_inverted_index.an | 168 |
| abstract_inverted_index.as | 41, 167, 191 |
| abstract_inverted_index.at | 225 |
| abstract_inverted_index.by | 173 |
| abstract_inverted_index.in | 15, 35, 54, 116, 184, 205, 219 |
| abstract_inverted_index.is | 32, 72, 182 |
| abstract_inverted_index.of | 3, 9, 28, 67, 84, 131, 146, 179 |
| abstract_inverted_index.on | 59 |
| abstract_inverted_index.or | 112, 227 |
| abstract_inverted_index.to | 25, 57, 75, 79, 153, 207 |
| abstract_inverted_index.we | 164 |
| abstract_inverted_index.The | 162, 222 |
| abstract_inverted_index.and | 18, 44, 134, 148, 194 |
| abstract_inverted_index.due | 56 |
| abstract_inverted_index.its | 159 |
| abstract_inverted_index.our | 197, 214 |
| abstract_inverted_index.the | 1, 6, 26, 65, 82, 117, 122, 138, 144, 150 |
| abstract_inverted_index.This | 30, 107, 141 |
| abstract_inverted_index.code | 223 |
| abstract_inverted_index.cope | 80 |
| abstract_inverted_index.data | 119 |
| abstract_inverted_index.dust | 46 |
| abstract_inverted_index.from | 13, 104 |
| abstract_inverted_index.need | 74 |
| abstract_inverted_index.risk | 145 |
| abstract_inverted_index.such | 40, 190 |
| abstract_inverted_index.that | 210 |
| abstract_inverted_index.this | 89, 91, 180, 185 |
| abstract_inverted_index.with | 81 |
| abstract_inverted_index.Color | 99 |
| abstract_inverted_index.adapt | 77 |
| abstract_inverted_index.bias, | 11 |
| abstract_inverted_index.color | 10, 60, 114, 132, 155, 212 |
| abstract_inverted_index.draws | 102 |
| abstract_inverted_index.field | 2 |
| abstract_inverted_index.given | 64 |
| abstract_inverted_index.image | 124 |
| abstract_inverted_index.issue | 31 |
| abstract_inverted_index.named | 97 |
| abstract_inverted_index.often | 50 |
| abstract_inverted_index.other | 135 |
| abstract_inverted_index.study | 92 |
| abstract_inverted_index.tasks | 189 |
| abstract_inverted_index.there | 71 |
| abstract_inverted_index.where | 48 |
| abstract_inverted_index.which | 101 |
| abstract_inverted_index.Across | 187 |
| abstract_inverted_index.Random | 98 |
| abstract_inverted_index.camera | 19, 85 |
| abstract_inverted_index.during | 62 |
| abstract_inverted_index.erases | 110 |
| abstract_inverted_index.handle | 154 |
| abstract_inverted_index.models | 49, 78 |
| abstract_inverted_index.neural | 139 |
| abstract_inverted_index.paper. | 186 |
| abstract_inverted_index.person | 42, 192 |
| abstract_inverted_index.robust | 174 |
| abstract_inverted_index.serves | 166 |
| abstract_inverted_index.strong | 201 |
| abstract_inverted_index.within | 137 |
| abstract_inverted_index.ability | 152 |
| abstract_inverted_index.address | 88 |
| abstract_inverted_index.complex | 36 |
| abstract_inverted_index.decline | 53 |
| abstract_inverted_index.methods | 209 |
| abstract_inverted_index.model's | 151 |
| abstract_inverted_index.models. | 29 |
| abstract_inverted_index.overall | 160 |
| abstract_inverted_index.partial | 111 |
| abstract_inverted_index.propose | 165 |
| abstract_inverted_index.thereby | 126, 157 |
| abstract_inverted_index.various | 188 |
| abstract_inverted_index.vision, | 5 |
| abstract_inverted_index.without | 120 |
| abstract_inverted_index.Erasing, | 100 |
| abstract_inverted_index.Notably, | 204 |
| abstract_inverted_index.analysis | 178 |
| abstract_inverted_index.approach | 142, 163, 198 |
| abstract_inverted_index.balanced | 129 |
| abstract_inverted_index.baseline | 202 |
| abstract_inverted_index.complete | 113 |
| abstract_inverted_index.computer | 4 |
| abstract_inverted_index.enhances | 149, 217 |
| abstract_inverted_index.ensemble | 105, 169 |
| abstract_inverted_index.existing | 208 |
| abstract_inverted_index.features | 133, 136 |
| abstract_inverted_index.improves | 200 |
| abstract_inverted_index.learning | 95, 170 |
| abstract_inverted_index.lighting | 17 |
| abstract_inverted_index.methods. | 203 |
| abstract_inverted_index.network. | 140 |
| abstract_inverted_index.original | 123 |
| abstract_inverted_index.presence | 8, 66 |
| abstract_inverted_index.presents | 21 |
| abstract_inverted_index.semantic | 195 |
| abstract_inverted_index.strategy | 96, 108, 215 |
| abstract_inverted_index.training | 118 |
| abstract_inverted_index.achieving | 127 |
| abstract_inverted_index.available | 224 |
| abstract_inverted_index.challenge | 24 |
| abstract_inverted_index.improving | 158 |
| abstract_inverted_index.learning. | 106 |
| abstract_inverted_index.mitigates | 143 |
| abstract_inverted_index.presented | 183 |
| abstract_inverted_index.resulting | 12 |
| abstract_inverted_index.strategy, | 171 |
| abstract_inverted_index.training, | 63 |
| abstract_inverted_index.weighting | 130 |
| abstract_inverted_index.wide-area | 37 |
| abstract_inverted_index.challenge, | 90 |
| abstract_inverted_index.comparison | 206 |
| abstract_inverted_index.disrupting | 121 |
| abstract_inverted_index.experience | 51 |
| abstract_inverted_index.industrial | 45 |
| abstract_inverted_index.introduces | 93 |
| abstract_inverted_index.persistent | 7 |
| abstract_inverted_index.prioritize | 211 |
| abstract_inverted_index.pronounced | 34 |
| abstract_inverted_index.real-world | 16 |
| abstract_inverted_index.robustness | 27 |
| abstract_inverted_index.scenarios, | 39 |
| abstract_inverted_index.scenarios. | 221 |
| abstract_inverted_index.structure, | 125 |
| abstract_inverted_index.variation, | 156 |
| abstract_inverted_index.conditions, | 20 |
| abstract_inverted_index.conditions. | 86 |
| abstract_inverted_index.effectively | 76 |
| abstract_inverted_index.information | 61, 115 |
| abstract_inverted_index.inspiration | 103 |
| abstract_inverted_index.methodology | 181 |
| abstract_inverted_index.overfitting | 58, 147 |
| abstract_inverted_index.performance | 55, 218 |
| abstract_inverted_index.robustness, | 213 |
| abstract_inverted_index.robustness. | 161 |
| abstract_inverted_index.selectively | 109 |
| abstract_inverted_index.substantial | 23 |
| abstract_inverted_index.variations. | 69 |
| abstract_inverted_index.complexities | 83 |
| abstract_inverted_index.consistently | 199 |
| abstract_inverted_index.cross-domain | 220 |
| abstract_inverted_index.fluctuations | 14 |
| abstract_inverted_index.particularly | 33 |
| abstract_inverted_index.surveillance | 38 |
| abstract_inverted_index.Consequently, | 70 |
| abstract_inverted_index.characterized | 172 |
| abstract_inverted_index.comprehensive | 177 |
| abstract_inverted_index.environmental | 68 |
| abstract_inverted_index.segmentation, | 47, 196 |
| abstract_inverted_index.significantly | 216 |
| abstract_inverted_index.interpretability. | 175 |
| abstract_inverted_index.re-identification | 43, 193 |
| abstract_inverted_index.\url{https://github.com/finger-monkey/Data-Augmentation}. | 228 |
| abstract_inverted_index.\url{https://github.com/layumi/Person\_reID\_baseline\_pytorch/blob/master/random\_erasing.py} | 226 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |