Exploring Dual Encoder Architectures for Question Answering Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2204.07120
Dual encoders have been used for question-answering (QA) and information retrieval (IR) tasks with good results. Previous research focuses on two major types of dual encoders, Siamese Dual Encoder (SDE), with parameters shared across two encoders, and Asymmetric Dual Encoder (ADE), with two distinctly parameterized encoders. In this work, we explore different ways in which the dual encoder can be structured, and evaluate how these differences can affect their efficacy in terms of QA retrieval tasks. By evaluating on MS MARCO, open domain NQ and the MultiReQA benchmarks, we show that SDE performs significantly better than ADE. We further propose three different improved versions of ADEs by sharing or freezing parts of the architectures between two encoder towers. We find that sharing parameters in projection layers would enable ADEs to perform competitively with or outperform SDEs. We further explore and explain why parameter sharing in projection layer significantly improves the efficacy of the dual encoders, by directly probing the embedding spaces of the two encoder towers with t-SNE algorithm.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2204.07120
- https://arxiv.org/pdf/2204.07120
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4224879068
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4224879068Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2204.07120Digital Object Identifier
- Title
-
Exploring Dual Encoder Architectures for Question AnsweringWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-04-14Full publication date if available
- Authors
-
Zhe Dong, Jianmo Ni, Dan Bikel, Enrique Alfonseca, Yuan Wang, Chen Qu, Imed ZitouniList of authors in order
- Landing page
-
https://arxiv.org/abs/2204.07120Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2204.07120Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2204.07120Direct OA link when available
- Concepts
-
Encoder, Computer science, Dual (grammatical number), Embedding, Parameterized complexity, Projection (relational algebra), Algorithm, Theoretical computer science, Domain (mathematical analysis), Computer engineering, Artificial intelligence, Mathematics, Art, Literature, Operating system, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4224879068 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2204.07120 |
| ids.doi | https://doi.org/10.48550/arxiv.2204.07120 |
| ids.openalex | https://openalex.org/W4224879068 |
| fwci | |
| type | preprint |
| title | Exploring Dual Encoder Architectures for Question Answering |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9980000257492065 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9948999881744385 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| topics[2].id | https://openalex.org/T11714 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9912999868392944 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Multimodal Machine Learning Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C118505674 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9028804302215576 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[0].display_name | Encoder |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7250429391860962 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2780980858 |
| concepts[2].level | 2 |
| concepts[2].score | 0.68900465965271 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q110022 |
| concepts[2].display_name | Dual (grammatical number) |
| concepts[3].id | https://openalex.org/C41608201 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6617774963378906 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[3].display_name | Embedding |
| concepts[4].id | https://openalex.org/C165464430 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6017663478851318 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1570441 |
| concepts[4].display_name | Parameterized complexity |
| concepts[5].id | https://openalex.org/C57493831 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5345762372016907 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3134666 |
| concepts[5].display_name | Projection (relational algebra) |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.44417059421539307 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C80444323 |
| concepts[7].level | 1 |
| concepts[7].score | 0.44172734022140503 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[7].display_name | Theoretical computer science |
| concepts[8].id | https://openalex.org/C36503486 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42201536893844604 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[8].display_name | Domain (mathematical analysis) |
| concepts[9].id | https://openalex.org/C113775141 |
| concepts[9].level | 1 |
| concepts[9].score | 0.40521979331970215 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q428691 |
| concepts[9].display_name | Computer engineering |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3713018298149109 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.16706466674804688 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C142362112 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[12].display_name | Art |
| concepts[13].id | https://openalex.org/C124952713 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8242 |
| concepts[13].display_name | Literature |
| concepts[14].id | https://openalex.org/C111919701 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[14].display_name | Operating system |
| concepts[15].id | https://openalex.org/C134306372 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[15].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/encoder |
| keywords[0].score | 0.9028804302215576 |
| keywords[0].display_name | Encoder |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7250429391860962 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/dual |
| keywords[2].score | 0.68900465965271 |
| keywords[2].display_name | Dual (grammatical number) |
| keywords[3].id | https://openalex.org/keywords/embedding |
| keywords[3].score | 0.6617774963378906 |
| keywords[3].display_name | Embedding |
| keywords[4].id | https://openalex.org/keywords/parameterized-complexity |
| keywords[4].score | 0.6017663478851318 |
| keywords[4].display_name | Parameterized complexity |
| keywords[5].id | https://openalex.org/keywords/projection |
| keywords[5].score | 0.5345762372016907 |
| keywords[5].display_name | Projection (relational algebra) |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.44417059421539307 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[7].score | 0.44172734022140503 |
| keywords[7].display_name | Theoretical computer science |
| keywords[8].id | https://openalex.org/keywords/domain |
| keywords[8].score | 0.42201536893844604 |
| keywords[8].display_name | Domain (mathematical analysis) |
| keywords[9].id | https://openalex.org/keywords/computer-engineering |
| keywords[9].score | 0.40521979331970215 |
| keywords[9].display_name | Computer engineering |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.3713018298149109 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.16706466674804688 |
| keywords[11].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2204.07120 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2204.07120 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2204.07120 |
| locations[1].id | doi:10.48550/arxiv.2204.07120 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2204.07120 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101842429 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8993-1386 |
| authorships[0].author.display_name | Zhe Dong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dong, Zhe |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5077817759 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6863-8073 |
| authorships[1].author.display_name | Jianmo Ni |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ni, Jianmo |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5061376608 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Dan Bikel |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Bikel, Dan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5091708404 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Enrique Alfonseca |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Alfonseca, Enrique |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100344860 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5379-8007 |
| authorships[4].author.display_name | Yuan Wang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wang, Yuan |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100541456 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Chen Qu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Qu, Chen |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5108365460 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Imed Zitouni |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Zitouni, Imed |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2204.07120 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Exploring Dual Encoder Architectures for Question Answering |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9980000257492065 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2051058708, https://openalex.org/W1494268238, https://openalex.org/W154868527, https://openalex.org/W1983207144, https://openalex.org/W2490706771, https://openalex.org/W2480116122, https://openalex.org/W4255576661, https://openalex.org/W1516574938, https://openalex.org/W2563912921, https://openalex.org/W2407611282 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2204.07120 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2204.07120 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2204.07120 |
| primary_location.id | pmh:oai:arXiv.org:2204.07120 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2204.07120 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2204.07120 |
| publication_date | 2022-04-14 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.By | 76 |
| abstract_inverted_index.In | 46 |
| abstract_inverted_index.MS | 79 |
| abstract_inverted_index.NQ | 83 |
| abstract_inverted_index.QA | 73 |
| abstract_inverted_index.We | 97, 118, 136 |
| abstract_inverted_index.be | 59 |
| abstract_inverted_index.by | 106, 155 |
| abstract_inverted_index.in | 53, 70, 123, 144 |
| abstract_inverted_index.of | 23, 72, 104, 111, 151, 161 |
| abstract_inverted_index.on | 19, 78 |
| abstract_inverted_index.or | 108, 133 |
| abstract_inverted_index.to | 129 |
| abstract_inverted_index.we | 49, 88 |
| abstract_inverted_index.SDE | 91 |
| abstract_inverted_index.and | 8, 36, 61, 84, 139 |
| abstract_inverted_index.can | 58, 66 |
| abstract_inverted_index.for | 5 |
| abstract_inverted_index.how | 63 |
| abstract_inverted_index.the | 55, 85, 112, 149, 152, 158, 162 |
| abstract_inverted_index.two | 20, 34, 42, 115, 163 |
| abstract_inverted_index.why | 141 |
| abstract_inverted_index.(IR) | 11 |
| abstract_inverted_index.(QA) | 7 |
| abstract_inverted_index.ADE. | 96 |
| abstract_inverted_index.ADEs | 105, 128 |
| abstract_inverted_index.Dual | 0, 27, 38 |
| abstract_inverted_index.been | 3 |
| abstract_inverted_index.dual | 24, 56, 153 |
| abstract_inverted_index.find | 119 |
| abstract_inverted_index.good | 14 |
| abstract_inverted_index.have | 2 |
| abstract_inverted_index.open | 81 |
| abstract_inverted_index.show | 89 |
| abstract_inverted_index.than | 95 |
| abstract_inverted_index.that | 90, 120 |
| abstract_inverted_index.this | 47 |
| abstract_inverted_index.used | 4 |
| abstract_inverted_index.ways | 52 |
| abstract_inverted_index.with | 13, 30, 41, 132, 166 |
| abstract_inverted_index.SDEs. | 135 |
| abstract_inverted_index.layer | 146 |
| abstract_inverted_index.major | 21 |
| abstract_inverted_index.parts | 110 |
| abstract_inverted_index.t-SNE | 167 |
| abstract_inverted_index.tasks | 12 |
| abstract_inverted_index.terms | 71 |
| abstract_inverted_index.their | 68 |
| abstract_inverted_index.these | 64 |
| abstract_inverted_index.three | 100 |
| abstract_inverted_index.types | 22 |
| abstract_inverted_index.which | 54 |
| abstract_inverted_index.work, | 48 |
| abstract_inverted_index.would | 126 |
| abstract_inverted_index.(ADE), | 40 |
| abstract_inverted_index.(SDE), | 29 |
| abstract_inverted_index.MARCO, | 80 |
| abstract_inverted_index.across | 33 |
| abstract_inverted_index.affect | 67 |
| abstract_inverted_index.better | 94 |
| abstract_inverted_index.domain | 82 |
| abstract_inverted_index.enable | 127 |
| abstract_inverted_index.layers | 125 |
| abstract_inverted_index.shared | 32 |
| abstract_inverted_index.spaces | 160 |
| abstract_inverted_index.tasks. | 75 |
| abstract_inverted_index.towers | 165 |
| abstract_inverted_index.Encoder | 28, 39 |
| abstract_inverted_index.Siamese | 26 |
| abstract_inverted_index.between | 114 |
| abstract_inverted_index.encoder | 57, 116, 164 |
| abstract_inverted_index.explain | 140 |
| abstract_inverted_index.explore | 50, 138 |
| abstract_inverted_index.focuses | 18 |
| abstract_inverted_index.further | 98, 137 |
| abstract_inverted_index.perform | 130 |
| abstract_inverted_index.probing | 157 |
| abstract_inverted_index.propose | 99 |
| abstract_inverted_index.sharing | 107, 121, 143 |
| abstract_inverted_index.towers. | 117 |
| abstract_inverted_index.Previous | 16 |
| abstract_inverted_index.directly | 156 |
| abstract_inverted_index.efficacy | 69, 150 |
| abstract_inverted_index.encoders | 1 |
| abstract_inverted_index.evaluate | 62 |
| abstract_inverted_index.freezing | 109 |
| abstract_inverted_index.improved | 102 |
| abstract_inverted_index.improves | 148 |
| abstract_inverted_index.performs | 92 |
| abstract_inverted_index.research | 17 |
| abstract_inverted_index.results. | 15 |
| abstract_inverted_index.versions | 103 |
| abstract_inverted_index.MultiReQA | 86 |
| abstract_inverted_index.different | 51, 101 |
| abstract_inverted_index.embedding | 159 |
| abstract_inverted_index.encoders, | 25, 35, 154 |
| abstract_inverted_index.encoders. | 45 |
| abstract_inverted_index.parameter | 142 |
| abstract_inverted_index.retrieval | 10, 74 |
| abstract_inverted_index.Asymmetric | 37 |
| abstract_inverted_index.algorithm. | 168 |
| abstract_inverted_index.distinctly | 43 |
| abstract_inverted_index.evaluating | 77 |
| abstract_inverted_index.outperform | 134 |
| abstract_inverted_index.parameters | 31, 122 |
| abstract_inverted_index.projection | 124, 145 |
| abstract_inverted_index.benchmarks, | 87 |
| abstract_inverted_index.differences | 65 |
| abstract_inverted_index.information | 9 |
| abstract_inverted_index.structured, | 60 |
| abstract_inverted_index.architectures | 113 |
| abstract_inverted_index.competitively | 131 |
| abstract_inverted_index.parameterized | 44 |
| abstract_inverted_index.significantly | 93, 147 |
| abstract_inverted_index.question-answering | 6 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |