Exploring Human attitude during Human-Robot Interaction Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1109/ro-man47096.2020.9223527
The aim of this work is to provide an automatic analysis to assess the user attitude when interacts with a companion robot. In detail, our work focuses on defining which combination of social cues the robot should recognize so that to stimulate the ongoing conversation and how. The analysis is performed on video recordings of 9 elderly users. From each video, low-level descriptors of the behavior of the user are extracted by using open-source automatic tools to extract information on the voice, the body posture, and the face landmarks. The assessment of 3 types of attitude (neutral, positive and negative) is performed through 3 machine learning classification algorithms: k-nearest neighbors, random decision forest and support vector regression. Since intra- and intersubject variability could affect the results of the assessment, this work shows the robustness of the classification models in both scenarios. Further analysis is performed on the type of representation used to describe the attitude. A raw and an auto-encoded representation is applied to the descriptors. The results of the attitude assessment show high values of accuracy (>0.85) both for unimodal and multimodal data. The outcome of this work can be integrated into a robotic platform to automatically assess the quality of interaction and to modify its behavior accordingly.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/ro-man47096.2020.9223527
- OA Status
- green
- Cited By
- 2
- References
- 19
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3093627217
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3093627217Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/ro-man47096.2020.9223527Digital Object Identifier
- Title
-
Exploring Human attitude during Human-Robot InteractionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-08-01Full publication date if available
- Authors
-
Alessandra Sorrentino, Laura Fiorini, Isabelle Fabbricotti, Daniele Sancarlo, Filomena Ciccone, Filippo CavalloList of authors in order
- Landing page
-
https://doi.org/10.1109/ro-man47096.2020.9223527Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hdl.handle.net/2158/1255027Direct OA link when available
- Concepts
-
Human–robot interaction, Computer science, Human–computer interaction, Robot, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
19Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3093627217 |
|---|---|
| doi | https://doi.org/10.1109/ro-man47096.2020.9223527 |
| ids.doi | https://doi.org/10.1109/ro-man47096.2020.9223527 |
| ids.mag | 3093627217 |
| ids.openalex | https://openalex.org/W3093627217 |
| fwci | 0.47569685 |
| type | article |
| title | Exploring Human attitude during Human-Robot Interaction |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 200 |
| biblio.first_page | 195 |
| topics[0].id | https://openalex.org/T10709 |
| topics[0].field.id | https://openalex.org/fields/32 |
| topics[0].field.display_name | Psychology |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3207 |
| topics[0].subfield.display_name | Social Psychology |
| topics[0].display_name | Social Robot Interaction and HRI |
| topics[1].id | https://openalex.org/T10812 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9939000010490417 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Human Pose and Action Recognition |
| topics[2].id | https://openalex.org/T10667 |
| topics[2].field.id | https://openalex.org/fields/32 |
| topics[2].field.display_name | Psychology |
| topics[2].score | 0.9904999732971191 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3205 |
| topics[2].subfield.display_name | Experimental and Cognitive Psychology |
| topics[2].display_name | Emotion and Mood Recognition |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C145460709 |
| concepts[0].level | 3 |
| concepts[0].score | 0.761437177658081 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q859951 |
| concepts[0].display_name | Human–robot interaction |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6109414100646973 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C107457646 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5842772126197815 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[2].display_name | Human–computer interaction |
| concepts[3].id | https://openalex.org/C90509273 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5803922414779663 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[3].display_name | Robot |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3495379686355591 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/human–robot-interaction |
| keywords[0].score | 0.761437177658081 |
| keywords[0].display_name | Human–robot interaction |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6109414100646973 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[2].score | 0.5842772126197815 |
| keywords[2].display_name | Human–computer interaction |
| keywords[3].id | https://openalex.org/keywords/robot |
| keywords[3].score | 0.5803922414779663 |
| keywords[3].display_name | Robot |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.3495379686355591 |
| keywords[4].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1109/ro-man47096.2020.9223527 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN) |
| locations[0].landing_page_url | https://doi.org/10.1109/ro-man47096.2020.9223527 |
| locations[1].id | pmh:eur:oai:pure.eur.nl:publications/9216ff9f-eb92-46dc-9f66-8dab7b8e852a |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401843 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Data Archiving and Networked Services (DANS) |
| locations[1].source.host_organization | https://openalex.org/I1322597698 |
| locations[1].source.host_organization_name | Royal Netherlands Academy of Arts and Sciences |
| locations[1].source.host_organization_lineage | https://openalex.org/I1322597698 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/conferencepaper |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, 195 - 200 |
| locations[1].landing_page_url | https://pure.eur.nl/en/publications/9216ff9f-eb92-46dc-9f66-8dab7b8e852a |
| locations[2].id | pmh:oai:flore.unifi.it:2158/1255027 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306402033 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Florence Research (University of Florence) |
| locations[2].source.host_organization | https://openalex.org/I45084792 |
| locations[2].source.host_organization_name | University of Florence |
| locations[2].source.host_organization_lineage | https://openalex.org/I45084792 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | info:eu-repo/semantics/conferenceObject |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://hdl.handle.net/2158/1255027 |
| locations[3].id | pmh:oai:www.iris.sssup.it:11382/539497 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4377196376 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | CINECA IRIS Institutional Research Information System (Sant'Anna School of Advanced Studies) |
| locations[3].source.host_organization | https://openalex.org/I162290304 |
| locations[3].source.host_organization_name | Scuola Superiore Sant'Anna |
| locations[3].source.host_organization_lineage | https://openalex.org/I162290304 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | info:eu-repo/semantics/conferenceObject |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | http://hdl.handle.net/11382/539497 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5058242508 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3187-810X |
| authorships[0].author.display_name | Alessandra Sorrentino |
| authorships[0].countries | IT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I162290304 |
| authorships[0].affiliations[0].raw_affiliation_string | Scuola Superiore Sant'Anna, Pisa, Italy |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Excellence in Robotics & AI, Piazza Martiri della Libertà, Pisa, Italy |
| authorships[0].institutions[0].id | https://openalex.org/I162290304 |
| authorships[0].institutions[0].ror | https://ror.org/025602r80 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I162290304 |
| authorships[0].institutions[0].country_code | IT |
| authorships[0].institutions[0].display_name | Scuola Superiore Sant'Anna |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | A. Sorrentino |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Excellence in Robotics & AI, Piazza Martiri della Libertà, Pisa, Italy, Scuola Superiore Sant'Anna, Pisa, Italy |
| authorships[1].author.id | https://openalex.org/A5063323303 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5784-3752 |
| authorships[1].author.display_name | Laura Fiorini |
| authorships[1].countries | IT |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I162290304 |
| authorships[1].affiliations[0].raw_affiliation_string | Scuola Superiore Sant'Anna, Pisa, Italy |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Excellence in Robotics & AI, Piazza Martiri della Libertà, Pisa, Italy |
| authorships[1].institutions[0].id | https://openalex.org/I162290304 |
| authorships[1].institutions[0].ror | https://ror.org/025602r80 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I162290304 |
| authorships[1].institutions[0].country_code | IT |
| authorships[1].institutions[0].display_name | Scuola Superiore Sant'Anna |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | L. Fiorini |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Excellence in Robotics & AI, Piazza Martiri della Libertà, Pisa, Italy, Scuola Superiore Sant'Anna, Pisa, Italy |
| authorships[2].author.id | https://openalex.org/A5061533143 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2369-4781 |
| authorships[2].author.display_name | Isabelle Fabbricotti |
| authorships[2].countries | NL |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I913958620 |
| authorships[2].affiliations[0].raw_affiliation_string | Erasmus School of Health Policy and Management, Erasmus University, Rotterdam, The Netherlands |
| authorships[2].institutions[0].id | https://openalex.org/I913958620 |
| authorships[2].institutions[0].ror | https://ror.org/057w15z03 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I913958620 |
| authorships[2].institutions[0].country_code | NL |
| authorships[2].institutions[0].display_name | Erasmus University Rotterdam |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | I. Fabbricotti |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Erasmus School of Health Policy and Management, Erasmus University, Rotterdam, The Netherlands |
| authorships[3].author.id | https://openalex.org/A5015906525 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9541-6364 |
| authorships[3].author.display_name | Daniele Sancarlo |
| authorships[3].countries | IT |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2800188116 |
| authorships[3].affiliations[0].raw_affiliation_string | the complex Unit of Geriatrics, Fondazione "Casa Sollievo della Sofferenza" - IRCCS, Foggia, Italy |
| authorships[3].institutions[0].id | https://openalex.org/I2800188116 |
| authorships[3].institutions[0].ror | https://ror.org/00md77g41 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I2800188116, https://openalex.org/I4210153126 |
| authorships[3].institutions[0].country_code | IT |
| authorships[3].institutions[0].display_name | Casa Sollievo della Sofferenza |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | D. Sancarlo |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | the complex Unit of Geriatrics, Fondazione "Casa Sollievo della Sofferenza" - IRCCS, Foggia, Italy |
| authorships[4].author.id | https://openalex.org/A5070454571 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0716-7757 |
| authorships[4].author.display_name | Filomena Ciccone |
| authorships[4].countries | IT |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I2800188116 |
| authorships[4].affiliations[0].raw_affiliation_string | the complex Unit of Geriatrics, Fondazione "Casa Sollievo della Sofferenza" - IRCCS, Foggia, Italy |
| authorships[4].institutions[0].id | https://openalex.org/I2800188116 |
| authorships[4].institutions[0].ror | https://ror.org/00md77g41 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I2800188116, https://openalex.org/I4210153126 |
| authorships[4].institutions[0].country_code | IT |
| authorships[4].institutions[0].display_name | Casa Sollievo della Sofferenza |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | F. Ciccone |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | the complex Unit of Geriatrics, Fondazione "Casa Sollievo della Sofferenza" - IRCCS, Foggia, Italy |
| authorships[5].author.id | https://openalex.org/A5037128658 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7432-5033 |
| authorships[5].author.display_name | Filippo Cavallo |
| authorships[5].countries | IT |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I45084792 |
| authorships[5].affiliations[0].raw_affiliation_string | the Department of Industrial Engineering, University of Florence, Florence, Italy |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I162290304 |
| authorships[5].affiliations[1].raw_affiliation_string | Scuola Superiore Sant'Anna, Pisa, Italy |
| authorships[5].affiliations[2].raw_affiliation_string | Department of Excellence in Robotics & AI, Piazza Martiri della Libertà, Pisa, Italy |
| authorships[5].institutions[0].id | https://openalex.org/I162290304 |
| authorships[5].institutions[0].ror | https://ror.org/025602r80 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I162290304 |
| authorships[5].institutions[0].country_code | IT |
| authorships[5].institutions[0].display_name | Scuola Superiore Sant'Anna |
| authorships[5].institutions[1].id | https://openalex.org/I45084792 |
| authorships[5].institutions[1].ror | https://ror.org/04jr1s763 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I45084792 |
| authorships[5].institutions[1].country_code | IT |
| authorships[5].institutions[1].display_name | University of Florence |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | F. Cavallo |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Excellence in Robotics & AI, Piazza Martiri della Libertà, Pisa, Italy, Scuola Superiore Sant'Anna, Pisa, Italy, the Department of Industrial Engineering, University of Florence, Florence, Italy |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://hdl.handle.net/2158/1255027 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2020-10-29T00:00:00 |
| display_name | Exploring Human attitude during Human-Robot Interaction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10709 |
| primary_topic.field.id | https://openalex.org/fields/32 |
| primary_topic.field.display_name | Psychology |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3207 |
| primary_topic.subfield.display_name | Social Psychology |
| primary_topic.display_name | Social Robot Interaction and HRI |
| related_works | https://openalex.org/W2978665606, https://openalex.org/W3205513966, https://openalex.org/W2052971528, https://openalex.org/W189465620, https://openalex.org/W3120459843, https://openalex.org/W4366547574, https://openalex.org/W3200191727, https://openalex.org/W4366818884, https://openalex.org/W2248308732, https://openalex.org/W3042490037 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:flore.unifi.it:2158/1255027 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402033 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Florence Research (University of Florence) |
| best_oa_location.source.host_organization | https://openalex.org/I45084792 |
| best_oa_location.source.host_organization_name | University of Florence |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I45084792 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/conferenceObject |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://hdl.handle.net/2158/1255027 |
| primary_location.id | doi:10.1109/ro-man47096.2020.9223527 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN) |
| primary_location.landing_page_url | https://doi.org/10.1109/ro-man47096.2020.9223527 |
| publication_date | 2020-08-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2942520813, https://openalex.org/W4211153864, https://openalex.org/W3124959264, https://openalex.org/W2524160855, https://openalex.org/W3013571849, https://openalex.org/W2785722081, https://openalex.org/W2163922914, https://openalex.org/W2100495367, https://openalex.org/W2559085405, https://openalex.org/W2807126412, https://openalex.org/W2090777335, https://openalex.org/W6713134421, https://openalex.org/W6675354045, https://openalex.org/W4229658977, https://openalex.org/W2101234009, https://openalex.org/W2402144811, https://openalex.org/W3093411041, https://openalex.org/W2097128017, https://openalex.org/W3100470991 |
| referenced_works_count | 19 |
| abstract_inverted_index.3 | 92, 103 |
| abstract_inverted_index.9 | 55 |
| abstract_inverted_index.A | 155 |
| abstract_inverted_index.a | 19, 193 |
| abstract_inverted_index.In | 22 |
| abstract_inverted_index.an | 8, 158 |
| abstract_inverted_index.be | 190 |
| abstract_inverted_index.by | 71 |
| abstract_inverted_index.in | 138 |
| abstract_inverted_index.is | 5, 49, 100, 143, 161 |
| abstract_inverted_index.of | 2, 31, 54, 63, 66, 91, 94, 126, 134, 148, 168, 175, 186, 201 |
| abstract_inverted_index.on | 27, 51, 79, 145 |
| abstract_inverted_index.so | 38 |
| abstract_inverted_index.to | 6, 11, 40, 76, 151, 163, 196, 204 |
| abstract_inverted_index.The | 0, 47, 89, 166, 184 |
| abstract_inverted_index.aim | 1 |
| abstract_inverted_index.and | 45, 85, 98, 113, 119, 157, 181, 203 |
| abstract_inverted_index.are | 69 |
| abstract_inverted_index.can | 189 |
| abstract_inverted_index.for | 179 |
| abstract_inverted_index.its | 206 |
| abstract_inverted_index.our | 24 |
| abstract_inverted_index.raw | 156 |
| abstract_inverted_index.the | 13, 34, 42, 64, 67, 80, 82, 86, 124, 127, 132, 135, 146, 153, 164, 169, 199 |
| abstract_inverted_index.From | 58 |
| abstract_inverted_index.body | 83 |
| abstract_inverted_index.both | 139, 178 |
| abstract_inverted_index.cues | 33 |
| abstract_inverted_index.each | 59 |
| abstract_inverted_index.face | 87 |
| abstract_inverted_index.high | 173 |
| abstract_inverted_index.how. | 46 |
| abstract_inverted_index.into | 192 |
| abstract_inverted_index.show | 172 |
| abstract_inverted_index.that | 39 |
| abstract_inverted_index.this | 3, 129, 187 |
| abstract_inverted_index.type | 147 |
| abstract_inverted_index.used | 150 |
| abstract_inverted_index.user | 14, 68 |
| abstract_inverted_index.when | 16 |
| abstract_inverted_index.with | 18 |
| abstract_inverted_index.work | 4, 25, 130, 188 |
| abstract_inverted_index.Since | 117 |
| abstract_inverted_index.could | 122 |
| abstract_inverted_index.data. | 183 |
| abstract_inverted_index.robot | 35 |
| abstract_inverted_index.shows | 131 |
| abstract_inverted_index.tools | 75 |
| abstract_inverted_index.types | 93 |
| abstract_inverted_index.using | 72 |
| abstract_inverted_index.video | 52 |
| abstract_inverted_index.which | 29 |
| abstract_inverted_index.affect | 123 |
| abstract_inverted_index.assess | 12, 198 |
| abstract_inverted_index.forest | 112 |
| abstract_inverted_index.intra- | 118 |
| abstract_inverted_index.models | 137 |
| abstract_inverted_index.modify | 205 |
| abstract_inverted_index.random | 110 |
| abstract_inverted_index.robot. | 21 |
| abstract_inverted_index.should | 36 |
| abstract_inverted_index.social | 32 |
| abstract_inverted_index.users. | 57 |
| abstract_inverted_index.values | 174 |
| abstract_inverted_index.vector | 115 |
| abstract_inverted_index.video, | 60 |
| abstract_inverted_index.voice, | 81 |
| abstract_inverted_index.Further | 141 |
| abstract_inverted_index.applied | 162 |
| abstract_inverted_index.detail, | 23 |
| abstract_inverted_index.elderly | 56 |
| abstract_inverted_index.extract | 77 |
| abstract_inverted_index.focuses | 26 |
| abstract_inverted_index.machine | 104 |
| abstract_inverted_index.ongoing | 43 |
| abstract_inverted_index.outcome | 185 |
| abstract_inverted_index.provide | 7 |
| abstract_inverted_index.quality | 200 |
| abstract_inverted_index.results | 125, 167 |
| abstract_inverted_index.robotic | 194 |
| abstract_inverted_index.support | 114 |
| abstract_inverted_index.through | 102 |
| abstract_inverted_index.accuracy | 176 |
| abstract_inverted_index.analysis | 10, 48, 142 |
| abstract_inverted_index.attitude | 15, 95, 170 |
| abstract_inverted_index.behavior | 65, 207 |
| abstract_inverted_index.decision | 111 |
| abstract_inverted_index.defining | 28 |
| abstract_inverted_index.describe | 152 |
| abstract_inverted_index.learning | 105 |
| abstract_inverted_index.platform | 195 |
| abstract_inverted_index.positive | 97 |
| abstract_inverted_index.posture, | 84 |
| abstract_inverted_index.unimodal | 180 |
| abstract_inverted_index.(neutral, | 96 |
| abstract_inverted_index.attitude. | 154 |
| abstract_inverted_index.automatic | 9, 74 |
| abstract_inverted_index.companion | 20 |
| abstract_inverted_index.extracted | 70 |
| abstract_inverted_index.interacts | 17 |
| abstract_inverted_index.k-nearest | 108 |
| abstract_inverted_index.low-level | 61 |
| abstract_inverted_index.negative) | 99 |
| abstract_inverted_index.performed | 50, 101, 144 |
| abstract_inverted_index.recognize | 37 |
| abstract_inverted_index.stimulate | 41 |
| abstract_inverted_index.assessment | 90, 171 |
| abstract_inverted_index.integrated | 191 |
| abstract_inverted_index.landmarks. | 88 |
| abstract_inverted_index.multimodal | 182 |
| abstract_inverted_index.neighbors, | 109 |
| abstract_inverted_index.recordings | 53 |
| abstract_inverted_index.robustness | 133 |
| abstract_inverted_index.scenarios. | 140 |
| abstract_inverted_index.algorithms: | 107 |
| abstract_inverted_index.assessment, | 128 |
| abstract_inverted_index.combination | 30 |
| abstract_inverted_index.descriptors | 62 |
| abstract_inverted_index.information | 78 |
| abstract_inverted_index.interaction | 202 |
| abstract_inverted_index.open-source | 73 |
| abstract_inverted_index.regression. | 116 |
| abstract_inverted_index.variability | 121 |
| abstract_inverted_index.accordingly. | 208 |
| abstract_inverted_index.auto-encoded | 159 |
| abstract_inverted_index.conversation | 44 |
| abstract_inverted_index.descriptors. | 165 |
| abstract_inverted_index.intersubject | 120 |
| abstract_inverted_index.automatically | 197 |
| abstract_inverted_index.(>0.85) | 177 |
| abstract_inverted_index.classification | 106, 136 |
| abstract_inverted_index.representation | 149, 160 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.5400000214576721 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.69177161 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |