Exploring Large Language Models to Facilitate Variable Autonomy for Human-Robot Teaming Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2312.07214
In a rapidly evolving digital landscape autonomous tools and robots are becoming commonplace. Recognizing the significance of this development, this paper explores the integration of Large Language Models (LLMs) like Generative pre-trained transformer (GPT) into human-robot teaming environments to facilitate variable autonomy through the means of verbal human-robot communication. In this paper, we introduce a novel framework for such a GPT-powered multi-robot testbed environment, based on a Unity Virtual Reality (VR) setting. This system allows users to interact with robot agents through natural language, each powered by individual GPT cores. By means of OpenAI's function calling, we bridge the gap between unstructured natural language input and structure robot actions. A user study with 12 participants explores the effectiveness of GPT-4 and, more importantly, user strategies when being given the opportunity to converse in natural language within a multi-robot environment. Our findings suggest that users may have preconceived expectations on how to converse with robots and seldom try to explore the actual language and cognitive capabilities of their robot collaborators. Still, those users who did explore where able to benefit from a much more natural flow of communication and human-like back-and-forth. We provide a set of lessons learned for future research and technical implementations of similar systems.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2312.07214
- https://arxiv.org/pdf/2312.07214
- OA Status
- green
- References
- 67
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389712472
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389712472Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2312.07214Digital Object Identifier
- Title
-
Exploring Large Language Models to Facilitate Variable Autonomy for Human-Robot TeamingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-12Full publication date if available
- Authors
-
Younes Lakhnati, Max Pascher, Jens GerkenList of authors in order
- Landing page
-
https://arxiv.org/abs/2312.07214Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2312.07214Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2312.07214Direct OA link when available
- Concepts
-
Robot, Computer science, Natural language, Converse, Human–computer interaction, Testbed, Human–robot interaction, Autonomy, Implementation, Natural language understanding, Artificial intelligence, Software engineering, World Wide Web, Law, Mathematics, Geometry, Political scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
67Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389712472 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2312.07214 |
| ids.doi | https://doi.org/10.48550/arxiv.2312.07214 |
| ids.openalex | https://openalex.org/W4389712472 |
| fwci | 0.0 |
| type | preprint |
| title | Exploring Large Language Models to Facilitate Variable Autonomy for Human-Robot Teaming |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12128 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9890999794006348 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in Service Interactions |
| topics[1].id | https://openalex.org/T10709 |
| topics[1].field.id | https://openalex.org/fields/32 |
| topics[1].field.display_name | Psychology |
| topics[1].score | 0.9477999806404114 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3207 |
| topics[1].subfield.display_name | Social Psychology |
| topics[1].display_name | Social Robot Interaction and HRI |
| topics[2].id | https://openalex.org/T10462 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9384999871253967 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Reinforcement Learning in Robotics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C90509273 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6770385503768921 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[0].display_name | Robot |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6286678910255432 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C195324797 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6022813320159912 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q33742 |
| concepts[2].display_name | Natural language |
| concepts[3].id | https://openalex.org/C2776809875 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6009087562561035 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1375963 |
| concepts[3].display_name | Converse |
| concepts[4].id | https://openalex.org/C107457646 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6005649566650391 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[4].display_name | Human–computer interaction |
| concepts[5].id | https://openalex.org/C31395832 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5648348927497864 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1318674 |
| concepts[5].display_name | Testbed |
| concepts[6].id | https://openalex.org/C145460709 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5000169277191162 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q859951 |
| concepts[6].display_name | Human–robot interaction |
| concepts[7].id | https://openalex.org/C65414064 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49664098024368286 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q484105 |
| concepts[7].display_name | Autonomy |
| concepts[8].id | https://openalex.org/C26713055 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4373285174369812 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q245962 |
| concepts[8].display_name | Implementation |
| concepts[9].id | https://openalex.org/C2779439875 |
| concepts[9].level | 3 |
| concepts[9].score | 0.41063880920410156 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1078276 |
| concepts[9].display_name | Natural language understanding |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.40862587094306946 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C115903868 |
| concepts[11].level | 1 |
| concepts[11].score | 0.1504644751548767 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q80993 |
| concepts[11].display_name | Software engineering |
| concepts[12].id | https://openalex.org/C136764020 |
| concepts[12].level | 1 |
| concepts[12].score | 0.12001702189445496 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[12].display_name | World Wide Web |
| concepts[13].id | https://openalex.org/C199539241 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[13].display_name | Law |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C2524010 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[15].display_name | Geometry |
| concepts[16].id | https://openalex.org/C17744445 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[16].display_name | Political science |
| keywords[0].id | https://openalex.org/keywords/robot |
| keywords[0].score | 0.6770385503768921 |
| keywords[0].display_name | Robot |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6286678910255432 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/natural-language |
| keywords[2].score | 0.6022813320159912 |
| keywords[2].display_name | Natural language |
| keywords[3].id | https://openalex.org/keywords/converse |
| keywords[3].score | 0.6009087562561035 |
| keywords[3].display_name | Converse |
| keywords[4].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[4].score | 0.6005649566650391 |
| keywords[4].display_name | Human–computer interaction |
| keywords[5].id | https://openalex.org/keywords/testbed |
| keywords[5].score | 0.5648348927497864 |
| keywords[5].display_name | Testbed |
| keywords[6].id | https://openalex.org/keywords/human–robot-interaction |
| keywords[6].score | 0.5000169277191162 |
| keywords[6].display_name | Human–robot interaction |
| keywords[7].id | https://openalex.org/keywords/autonomy |
| keywords[7].score | 0.49664098024368286 |
| keywords[7].display_name | Autonomy |
| keywords[8].id | https://openalex.org/keywords/implementation |
| keywords[8].score | 0.4373285174369812 |
| keywords[8].display_name | Implementation |
| keywords[9].id | https://openalex.org/keywords/natural-language-understanding |
| keywords[9].score | 0.41063880920410156 |
| keywords[9].display_name | Natural language understanding |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.40862587094306946 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/software-engineering |
| keywords[11].score | 0.1504644751548767 |
| keywords[11].display_name | Software engineering |
| keywords[12].id | https://openalex.org/keywords/world-wide-web |
| keywords[12].score | 0.12001702189445496 |
| keywords[12].display_name | World Wide Web |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2312.07214 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2312.07214 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2312.07214 |
| locations[1].id | doi:10.48550/arxiv.2312.07214 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2312.07214 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5020886856 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Younes Lakhnati |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I200332995 |
| authorships[0].affiliations[0].raw_affiliation_string | TU Dortmund University, Inclusive Human-Robot-Interaction, Dortmund, NW, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I200332995 |
| authorships[0].institutions[0].ror | https://ror.org/01k97gp34 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I200332995 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | TU Dortmund University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Younes Lakhnati |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | TU Dortmund University, Inclusive Human-Robot-Interaction, Dortmund, NW, Germany |
| authorships[1].author.id | https://openalex.org/A5061109375 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6847-0696 |
| authorships[1].author.display_name | Max Pascher |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I62318514 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Duisburg-Essen, Human-Computer Interaction, Essen, NW, Germany |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I200332995 |
| authorships[1].affiliations[1].raw_affiliation_string | TU Dortmund University, Inclusive Human-Robot-Interaction, Dortmund, NW, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I200332995 |
| authorships[1].institutions[0].ror | https://ror.org/01k97gp34 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I200332995 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | TU Dortmund University |
| authorships[1].institutions[1].id | https://openalex.org/I62318514 |
| authorships[1].institutions[1].ror | https://ror.org/04mz5ra38 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I62318514 |
| authorships[1].institutions[1].country_code | DE |
| authorships[1].institutions[1].display_name | University of Duisburg-Essen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Max Pascher |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | TU Dortmund University, Inclusive Human-Robot-Interaction, Dortmund, NW, Germany, University of Duisburg-Essen, Human-Computer Interaction, Essen, NW, Germany |
| authorships[2].author.id | https://openalex.org/A5003447205 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0634-3931 |
| authorships[2].author.display_name | Jens Gerken |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I200332995 |
| authorships[2].affiliations[0].raw_affiliation_string | TU Dortmund University, Inclusive Human-Robot-Interaction, Dortmund, NW, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I200332995 |
| authorships[2].institutions[0].ror | https://ror.org/01k97gp34 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I200332995 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | TU Dortmund University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Jens Gerken |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | TU Dortmund University, Inclusive Human-Robot-Interaction, Dortmund, NW, Germany |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2312.07214 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Exploring Large Language Models to Facilitate Variable Autonomy for Human-Robot Teaming |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12128 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9890999794006348 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in Service Interactions |
| related_works | https://openalex.org/W2367925007, https://openalex.org/W4288263119, https://openalex.org/W3202500587, https://openalex.org/W3015724364, https://openalex.org/W2967994095, https://openalex.org/W4285240985, https://openalex.org/W2900126711, https://openalex.org/W4225162083, https://openalex.org/W2963761716, https://openalex.org/W4286930972 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2312.07214 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2312.07214 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2312.07214 |
| primary_location.id | pmh:oai:arXiv.org:2312.07214 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2312.07214 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2312.07214 |
| publication_date | 2023-12-12 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W1989104072, https://openalex.org/W2902845453, https://openalex.org/W4232985273, https://openalex.org/W1979290264, https://openalex.org/W3177813494, https://openalex.org/W4367040547, https://openalex.org/W4366368023, https://openalex.org/W4386395818, https://openalex.org/W3130983251, https://openalex.org/W2900726863, https://openalex.org/W1638773224, https://openalex.org/W2792106437, https://openalex.org/W4252394690, https://openalex.org/W3040095408, https://openalex.org/W2068406960, https://openalex.org/W2991152561, https://openalex.org/W2229480318, https://openalex.org/W2562938470, https://openalex.org/W4363646631, https://openalex.org/W2783282453, https://openalex.org/W2925545110, https://openalex.org/W3132476284, https://openalex.org/W4387959515, https://openalex.org/W2086207208, https://openalex.org/W4372348475, https://openalex.org/W2970476646, https://openalex.org/W4248473925, https://openalex.org/W4316041216, https://openalex.org/W4387860528, https://openalex.org/W2885909793, https://openalex.org/W4225576545, https://openalex.org/W2970597249, https://openalex.org/W4285778194, https://openalex.org/W3155340931, https://openalex.org/W3134383769, https://openalex.org/W4385245566, https://openalex.org/W4292779060, https://openalex.org/W2982551402, https://openalex.org/W4312341782, https://openalex.org/W1990114866, https://openalex.org/W2005814556, https://openalex.org/W4319341091, https://openalex.org/W2563668739, https://openalex.org/W2968482980, https://openalex.org/W4287674181, https://openalex.org/W4323029939, https://openalex.org/W3217422184, https://openalex.org/W2963761716, https://openalex.org/W4224912544, https://openalex.org/W4387433546, https://openalex.org/W2036001619, https://openalex.org/W4323537272, https://openalex.org/W1986081132, https://openalex.org/W2143331706, https://openalex.org/W2588535899, https://openalex.org/W4226278401, https://openalex.org/W2896457183, https://openalex.org/W2612526027, https://openalex.org/W4387359135, https://openalex.org/W4360891289, https://openalex.org/W4385798548, https://openalex.org/W4384520834, https://openalex.org/W2035097838, https://openalex.org/W4320920036, https://openalex.org/W4309088836, https://openalex.org/W4385825540, https://openalex.org/W4385729976 |
| referenced_works_count | 67 |
| abstract_inverted_index.A | 109 |
| abstract_inverted_index.a | 1, 54, 59, 66, 136, 180, 192 |
| abstract_inverted_index.12 | 113 |
| abstract_inverted_index.By | 90 |
| abstract_inverted_index.In | 0, 49 |
| abstract_inverted_index.We | 190 |
| abstract_inverted_index.by | 86 |
| abstract_inverted_index.in | 132 |
| abstract_inverted_index.of | 16, 24, 45, 92, 118, 165, 185, 194, 203 |
| abstract_inverted_index.on | 65, 148 |
| abstract_inverted_index.to | 38, 76, 130, 150, 157, 177 |
| abstract_inverted_index.we | 52, 96 |
| abstract_inverted_index.GPT | 88 |
| abstract_inverted_index.Our | 139 |
| abstract_inverted_index.and | 8, 105, 154, 162, 187, 200 |
| abstract_inverted_index.are | 10 |
| abstract_inverted_index.did | 173 |
| abstract_inverted_index.for | 57, 197 |
| abstract_inverted_index.gap | 99 |
| abstract_inverted_index.how | 149 |
| abstract_inverted_index.may | 144 |
| abstract_inverted_index.set | 193 |
| abstract_inverted_index.the | 14, 22, 43, 98, 116, 128, 159 |
| abstract_inverted_index.try | 156 |
| abstract_inverted_index.who | 172 |
| abstract_inverted_index.(VR) | 70 |
| abstract_inverted_index.This | 72 |
| abstract_inverted_index.able | 176 |
| abstract_inverted_index.and, | 120 |
| abstract_inverted_index.each | 84 |
| abstract_inverted_index.flow | 184 |
| abstract_inverted_index.from | 179 |
| abstract_inverted_index.have | 145 |
| abstract_inverted_index.into | 34 |
| abstract_inverted_index.like | 29 |
| abstract_inverted_index.more | 121, 182 |
| abstract_inverted_index.much | 181 |
| abstract_inverted_index.such | 58 |
| abstract_inverted_index.that | 142 |
| abstract_inverted_index.this | 17, 19, 50 |
| abstract_inverted_index.user | 110, 123 |
| abstract_inverted_index.when | 125 |
| abstract_inverted_index.with | 78, 112, 152 |
| abstract_inverted_index.(GPT) | 33 |
| abstract_inverted_index.GPT-4 | 119 |
| abstract_inverted_index.Large | 25 |
| abstract_inverted_index.Unity | 67 |
| abstract_inverted_index.based | 64 |
| abstract_inverted_index.being | 126 |
| abstract_inverted_index.given | 127 |
| abstract_inverted_index.input | 104 |
| abstract_inverted_index.means | 44, 91 |
| abstract_inverted_index.novel | 55 |
| abstract_inverted_index.paper | 20 |
| abstract_inverted_index.robot | 79, 107, 167 |
| abstract_inverted_index.study | 111 |
| abstract_inverted_index.their | 166 |
| abstract_inverted_index.those | 170 |
| abstract_inverted_index.tools | 7 |
| abstract_inverted_index.users | 75, 143, 171 |
| abstract_inverted_index.where | 175 |
| abstract_inverted_index.(LLMs) | 28 |
| abstract_inverted_index.Models | 27 |
| abstract_inverted_index.Still, | 169 |
| abstract_inverted_index.actual | 160 |
| abstract_inverted_index.agents | 80 |
| abstract_inverted_index.allows | 74 |
| abstract_inverted_index.bridge | 97 |
| abstract_inverted_index.cores. | 89 |
| abstract_inverted_index.future | 198 |
| abstract_inverted_index.paper, | 51 |
| abstract_inverted_index.robots | 9, 153 |
| abstract_inverted_index.seldom | 155 |
| abstract_inverted_index.system | 73 |
| abstract_inverted_index.verbal | 46 |
| abstract_inverted_index.within | 135 |
| abstract_inverted_index.Reality | 69 |
| abstract_inverted_index.Virtual | 68 |
| abstract_inverted_index.benefit | 178 |
| abstract_inverted_index.between | 100 |
| abstract_inverted_index.digital | 4 |
| abstract_inverted_index.explore | 158, 174 |
| abstract_inverted_index.learned | 196 |
| abstract_inverted_index.lessons | 195 |
| abstract_inverted_index.natural | 82, 102, 133, 183 |
| abstract_inverted_index.powered | 85 |
| abstract_inverted_index.provide | 191 |
| abstract_inverted_index.rapidly | 2 |
| abstract_inverted_index.similar | 204 |
| abstract_inverted_index.suggest | 141 |
| abstract_inverted_index.teaming | 36 |
| abstract_inverted_index.testbed | 62 |
| abstract_inverted_index.through | 42, 81 |
| abstract_inverted_index.Language | 26 |
| abstract_inverted_index.OpenAI's | 93 |
| abstract_inverted_index.actions. | 108 |
| abstract_inverted_index.autonomy | 41 |
| abstract_inverted_index.becoming | 11 |
| abstract_inverted_index.calling, | 95 |
| abstract_inverted_index.converse | 131, 151 |
| abstract_inverted_index.evolving | 3 |
| abstract_inverted_index.explores | 21, 115 |
| abstract_inverted_index.findings | 140 |
| abstract_inverted_index.function | 94 |
| abstract_inverted_index.interact | 77 |
| abstract_inverted_index.language | 103, 134, 161 |
| abstract_inverted_index.research | 199 |
| abstract_inverted_index.setting. | 71 |
| abstract_inverted_index.systems. | 205 |
| abstract_inverted_index.variable | 40 |
| abstract_inverted_index.cognitive | 163 |
| abstract_inverted_index.framework | 56 |
| abstract_inverted_index.introduce | 53 |
| abstract_inverted_index.landscape | 5 |
| abstract_inverted_index.language, | 83 |
| abstract_inverted_index.structure | 106 |
| abstract_inverted_index.technical | 201 |
| abstract_inverted_index.Generative | 30 |
| abstract_inverted_index.autonomous | 6 |
| abstract_inverted_index.facilitate | 39 |
| abstract_inverted_index.human-like | 188 |
| abstract_inverted_index.individual | 87 |
| abstract_inverted_index.strategies | 124 |
| abstract_inverted_index.GPT-powered | 60 |
| abstract_inverted_index.Recognizing | 13 |
| abstract_inverted_index.human-robot | 35, 47 |
| abstract_inverted_index.integration | 23 |
| abstract_inverted_index.multi-robot | 61, 137 |
| abstract_inverted_index.opportunity | 129 |
| abstract_inverted_index.pre-trained | 31 |
| abstract_inverted_index.transformer | 32 |
| abstract_inverted_index.capabilities | 164 |
| abstract_inverted_index.commonplace. | 12 |
| abstract_inverted_index.development, | 18 |
| abstract_inverted_index.environment, | 63 |
| abstract_inverted_index.environment. | 138 |
| abstract_inverted_index.environments | 37 |
| abstract_inverted_index.expectations | 147 |
| abstract_inverted_index.importantly, | 122 |
| abstract_inverted_index.participants | 114 |
| abstract_inverted_index.preconceived | 146 |
| abstract_inverted_index.significance | 15 |
| abstract_inverted_index.unstructured | 101 |
| abstract_inverted_index.communication | 186 |
| abstract_inverted_index.effectiveness | 117 |
| abstract_inverted_index.collaborators. | 168 |
| abstract_inverted_index.communication. | 48 |
| abstract_inverted_index.back-and-forth. | 189 |
| abstract_inverted_index.implementations | 202 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.7900000214576721 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.20292219 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |