Exploring online public survey lifestyle datasets with statistical analysis, machine learning and semantic ontology Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-024-74539-6
Lifestyle diseases significantly contribute to the global health burden, with lifestyle factors playing a crucial role in the development of depression. The COVID-19 pandemic has intensified many determinants of depression. This study aimed to identify lifestyle and demographic factors associated with depression symptoms among Indians during the pandemic, focusing on a sample from Kolkata, India. An online public survey was conducted, gathering data from 1,834 participants (with 1,767 retained post-cleaning) over three months via social media and email. The survey consisted of 44 questions and was distributed anonymously to ensure privacy. Data were analyzed using statistical methods and machine learning, with principal component analysis (PCA) and analysis of variance (ANOVA) employed for feature selection. K-means clustering divided the pre-processed dataset into five clusters, and a support vector machine (SVM) with a linear kernel achieved 96% accuracy in a multi-class classification problem. The Local Interpretable Model-agnostic Explanations (LIME) algorithm provided local explanations for the SVM model predictions. Additionally, an OWL (web ontology language) ontology facilitated the semantic representation and reasoning of the survey data. The study highlighted a pipeline for collecting, analyzing, and representing data from online public surveys during the pandemic. The identified factors were correlated with depressive symptoms, illustrating the significant influence of lifestyle and demographic variables on mental health. The online survey method proved advantageous for data collection, visualization, and cost-effectiveness while maintaining anonymity and reducing bias. Challenges included reaching the target population, addressing language barriers, ensuring digital literacy, and mitigating dishonest responses and sampling errors. In conclusion, lifestyle and demographic factors significantly impact depression during the COVID-19 pandemic. The study’s methodology offers valuable insights into addressing mental health challenges through scalable online surveys, aiding in the understanding and mitigation of depression risk factors.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-024-74539-6
- OA Status
- gold
- Cited By
- 1
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403425772
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403425772Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-024-74539-6Digital Object Identifier
- Title
-
Exploring online public survey lifestyle datasets with statistical analysis, machine learning and semantic ontologyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-15Full publication date if available
- Authors
-
Ayan Chatterjee, Michael A. Riegler, Miriam S. Johnson, Jishnu Das, Nibedita Pahari, Raghavendra Ramachandra, Bikramaditya Ghosh, Arpan Saha, Ram BajpaiList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-024-74539-6Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1038/s41598-024-74539-6Direct OA link when available
- Concepts
-
Ontology, Computer science, Information retrieval, Data science, Text mining, Statistical analysis, Natural language processing, World Wide Web, Artificial intelligence, Statistics, Mathematics, Epistemology, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403425772 |
|---|---|
| doi | https://doi.org/10.1038/s41598-024-74539-6 |
| ids.doi | https://doi.org/10.1038/s41598-024-74539-6 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39406791 |
| ids.openalex | https://openalex.org/W4403425772 |
| fwci | 1.12658576 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D008297 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Male |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D005260 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Female |
| mesh[3].qualifier_ui | Q000453 |
| mesh[3].descriptor_ui | D000086382 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | epidemiology |
| mesh[3].descriptor_name | COVID-19 |
| mesh[4].qualifier_ui | Q000523 |
| mesh[4].descriptor_ui | D000086382 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | psychology |
| mesh[4].descriptor_name | COVID-19 |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D008019 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Life Style |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000328 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Adult |
| mesh[7].qualifier_ui | Q000453 |
| mesh[7].descriptor_ui | D003863 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | epidemiology |
| mesh[7].descriptor_name | Depression |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000069550 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Machine Learning |
| mesh[9].qualifier_ui | Q000453 |
| mesh[9].descriptor_ui | D007194 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | epidemiology |
| mesh[9].descriptor_name | India |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D008875 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Middle Aged |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D011795 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Surveys and Questionnaires |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D012660 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Semantics |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D055815 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Young Adult |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D060388 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Support Vector Machine |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D025341 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Principal Component Analysis |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D000293 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Adolescent |
| mesh[17].qualifier_ui | Q000302 |
| mesh[17].descriptor_ui | D000086402 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | isolation & purification |
| mesh[17].descriptor_name | SARS-CoV-2 |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D058873 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Pandemics |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D000368 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Aged |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D006801 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Humans |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D008297 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Male |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D005260 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Female |
| mesh[23].qualifier_ui | Q000453 |
| mesh[23].descriptor_ui | D000086382 |
| mesh[23].is_major_topic | True |
| mesh[23].qualifier_name | epidemiology |
| mesh[23].descriptor_name | COVID-19 |
| mesh[24].qualifier_ui | Q000523 |
| mesh[24].descriptor_ui | D000086382 |
| mesh[24].is_major_topic | True |
| mesh[24].qualifier_name | psychology |
| mesh[24].descriptor_name | COVID-19 |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D008019 |
| mesh[25].is_major_topic | True |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Life Style |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D000328 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Adult |
| mesh[27].qualifier_ui | Q000453 |
| mesh[27].descriptor_ui | D003863 |
| mesh[27].is_major_topic | True |
| mesh[27].qualifier_name | epidemiology |
| mesh[27].descriptor_name | Depression |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D000069550 |
| mesh[28].is_major_topic | True |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Machine Learning |
| mesh[29].qualifier_ui | Q000453 |
| mesh[29].descriptor_ui | D007194 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | epidemiology |
| mesh[29].descriptor_name | India |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D008875 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | Middle Aged |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D011795 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Surveys and Questionnaires |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D012660 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Semantics |
| mesh[33].qualifier_ui | |
| mesh[33].descriptor_ui | D055815 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | |
| mesh[33].descriptor_name | Young Adult |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D060388 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Support Vector Machine |
| mesh[35].qualifier_ui | |
| mesh[35].descriptor_ui | D025341 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | |
| mesh[35].descriptor_name | Principal Component Analysis |
| mesh[36].qualifier_ui | |
| mesh[36].descriptor_ui | D000293 |
| mesh[36].is_major_topic | False |
| mesh[36].qualifier_name | |
| mesh[36].descriptor_name | Adolescent |
| mesh[37].qualifier_ui | Q000302 |
| mesh[37].descriptor_ui | D000086402 |
| mesh[37].is_major_topic | False |
| mesh[37].qualifier_name | isolation & purification |
| mesh[37].descriptor_name | SARS-CoV-2 |
| mesh[38].qualifier_ui | |
| mesh[38].descriptor_ui | D058873 |
| mesh[38].is_major_topic | False |
| mesh[38].qualifier_name | |
| mesh[38].descriptor_name | Pandemics |
| mesh[39].qualifier_ui | |
| mesh[39].descriptor_ui | D000368 |
| mesh[39].is_major_topic | False |
| mesh[39].qualifier_name | |
| mesh[39].descriptor_name | Aged |
| mesh[40].qualifier_ui | |
| mesh[40].descriptor_ui | D006801 |
| mesh[40].is_major_topic | False |
| mesh[40].qualifier_name | |
| mesh[40].descriptor_name | Humans |
| mesh[41].qualifier_ui | |
| mesh[41].descriptor_ui | D008297 |
| mesh[41].is_major_topic | False |
| mesh[41].qualifier_name | |
| mesh[41].descriptor_name | Male |
| mesh[42].qualifier_ui | |
| mesh[42].descriptor_ui | D005260 |
| mesh[42].is_major_topic | False |
| mesh[42].qualifier_name | |
| mesh[42].descriptor_name | Female |
| mesh[43].qualifier_ui | Q000453 |
| mesh[43].descriptor_ui | D000086382 |
| mesh[43].is_major_topic | True |
| mesh[43].qualifier_name | epidemiology |
| mesh[43].descriptor_name | COVID-19 |
| mesh[44].qualifier_ui | Q000523 |
| mesh[44].descriptor_ui | D000086382 |
| mesh[44].is_major_topic | True |
| mesh[44].qualifier_name | psychology |
| mesh[44].descriptor_name | COVID-19 |
| mesh[45].qualifier_ui | |
| mesh[45].descriptor_ui | D008019 |
| mesh[45].is_major_topic | True |
| mesh[45].qualifier_name | |
| mesh[45].descriptor_name | Life Style |
| mesh[46].qualifier_ui | |
| mesh[46].descriptor_ui | D000328 |
| mesh[46].is_major_topic | False |
| mesh[46].qualifier_name | |
| mesh[46].descriptor_name | Adult |
| mesh[47].qualifier_ui | Q000453 |
| mesh[47].descriptor_ui | D003863 |
| mesh[47].is_major_topic | True |
| mesh[47].qualifier_name | epidemiology |
| mesh[47].descriptor_name | Depression |
| mesh[48].qualifier_ui | |
| mesh[48].descriptor_ui | D000069550 |
| mesh[48].is_major_topic | True |
| mesh[48].qualifier_name | |
| mesh[48].descriptor_name | Machine Learning |
| mesh[49].qualifier_ui | Q000453 |
| mesh[49].descriptor_ui | D007194 |
| mesh[49].is_major_topic | False |
| mesh[49].qualifier_name | epidemiology |
| mesh[49].descriptor_name | India |
| type | article |
| title | Exploring online public survey lifestyle datasets with statistical analysis, machine learning and semantic ontology |
| biblio.issue | 1 |
| biblio.volume | 14 |
| biblio.last_page | 24190 |
| biblio.first_page | 24190 |
| topics[0].id | https://openalex.org/T11980 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.9865000247955322 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3313 |
| topics[0].subfield.display_name | Transportation |
| topics[0].display_name | Human Mobility and Location-Based Analysis |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| concepts[0].id | https://openalex.org/C25810664 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7352532744407654 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q44325 |
| concepts[0].display_name | Ontology |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7240785360336304 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C23123220 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5028588175773621 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[2].display_name | Information retrieval |
| concepts[3].id | https://openalex.org/C2522767166 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4933728277683258 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[3].display_name | Data science |
| concepts[4].id | https://openalex.org/C71472368 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4457271993160248 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q676880 |
| concepts[4].display_name | Text mining |
| concepts[5].id | https://openalex.org/C2986587452 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4396972954273224 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q938438 |
| concepts[5].display_name | Statistical analysis |
| concepts[6].id | https://openalex.org/C204321447 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3915024995803833 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[6].display_name | Natural language processing |
| concepts[7].id | https://openalex.org/C136764020 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3495732843875885 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[7].display_name | World Wide Web |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3435111939907074 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C105795698 |
| concepts[9].level | 1 |
| concepts[9].score | 0.12577074766159058 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[9].display_name | Statistics |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C111472728 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[11].display_name | Epistemology |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/ontology |
| keywords[0].score | 0.7352532744407654 |
| keywords[0].display_name | Ontology |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7240785360336304 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/information-retrieval |
| keywords[2].score | 0.5028588175773621 |
| keywords[2].display_name | Information retrieval |
| keywords[3].id | https://openalex.org/keywords/data-science |
| keywords[3].score | 0.4933728277683258 |
| keywords[3].display_name | Data science |
| keywords[4].id | https://openalex.org/keywords/text-mining |
| keywords[4].score | 0.4457271993160248 |
| keywords[4].display_name | Text mining |
| keywords[5].id | https://openalex.org/keywords/statistical-analysis |
| keywords[5].score | 0.4396972954273224 |
| keywords[5].display_name | Statistical analysis |
| keywords[6].id | https://openalex.org/keywords/natural-language-processing |
| keywords[6].score | 0.3915024995803833 |
| keywords[6].display_name | Natural language processing |
| keywords[7].id | https://openalex.org/keywords/world-wide-web |
| keywords[7].score | 0.3495732843875885 |
| keywords[7].display_name | World Wide Web |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.3435111939907074 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/statistics |
| keywords[9].score | 0.12577074766159058 |
| keywords[9].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1038/s41598-024-74539-6 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-024-74539-6 |
| locations[1].id | pmid:39406791 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39406791 |
| locations[2].id | pmh:oai:doaj.org/article:dc5e1c6478dc496996db992983d9cd60 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Scientific Reports, Vol 14, Iss 1, Pp 1-24 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/dc5e1c6478dc496996db992983d9cd60 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11480510 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sci Rep |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11480510 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5063683767 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0407-7702 |
| authorships[0].author.display_name | Ayan Chatterjee |
| authorships[0].countries | NO |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I200650556 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Information and Communication Technologies, University of Agder, 4879, Grimstad, Norway |
| authorships[0].institutions[0].id | https://openalex.org/I200650556 |
| authorships[0].institutions[0].ror | https://ror.org/03x297z98 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I200650556 |
| authorships[0].institutions[0].country_code | NO |
| authorships[0].institutions[0].display_name | University of Agder |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ayan Chatterjee |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Information and Communication Technologies, University of Agder, 4879, Grimstad, Norway |
| authorships[1].author.id | https://openalex.org/A5102968267 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3153-2064 |
| authorships[1].author.display_name | Michael A. Riegler |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Digital Technology, STIFTELSEN NILU, 2007, Kjeller, Norway |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Michael A. Riegler |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Digital Technology, STIFTELSEN NILU, 2007, Kjeller, Norway |
| authorships[2].author.id | https://openalex.org/A5029380796 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7486-2859 |
| authorships[2].author.display_name | Miriam S. Johnson |
| authorships[2].countries | NO |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I184531372 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Behavioral Sciences, Oslo Metropolitan University, 0176, Oslo, Norway |
| authorships[2].institutions[0].id | https://openalex.org/I184531372 |
| authorships[2].institutions[0].ror | https://ror.org/04q12yn84 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I184531372 |
| authorships[2].institutions[0].country_code | NO |
| authorships[2].institutions[0].display_name | OsloMet – Oslo Metropolitan University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Miriam Sinkerud Johnson |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Behavioral Sciences, Oslo Metropolitan University, 0176, Oslo, Norway |
| authorships[3].author.id | https://openalex.org/A5007832073 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5909-3585 |
| authorships[3].author.display_name | Jishnu Das |
| authorships[3].countries | NO |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I200650556 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Information Systems, University of Agder, 4630, Kristiansand, Norway |
| authorships[3].institutions[0].id | https://openalex.org/I200650556 |
| authorships[3].institutions[0].ror | https://ror.org/03x297z98 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I200650556 |
| authorships[3].institutions[0].country_code | NO |
| authorships[3].institutions[0].display_name | University of Agder |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jishnu Das |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Information Systems, University of Agder, 4630, Kristiansand, Norway |
| authorships[4].author.id | https://openalex.org/A5072236225 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2117-730X |
| authorships[4].author.display_name | Nibedita Pahari |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I63346067 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Software Development, Maulana Abul Kalam Azad University of Technology, Kolkata, 700064, India |
| authorships[4].institutions[0].id | https://openalex.org/I63346067 |
| authorships[4].institutions[0].ror | https://ror.org/007j02p07 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I63346067 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Maulana Abul Kalam Azad Institute of Asian Studies |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Nibedita Pahari |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Software Development, Maulana Abul Kalam Azad University of Technology, Kolkata, 700064, India |
| authorships[5].author.id | https://openalex.org/A5073391891 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0484-3956 |
| authorships[5].author.display_name | Raghavendra Ramachandra |
| authorships[5].countries | NO |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I204778367 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Information Security and Communication Technology, Norwegian University of Science and Technology, 2815, Gjøvik, Norway |
| authorships[5].institutions[0].id | https://openalex.org/I204778367 |
| authorships[5].institutions[0].ror | https://ror.org/05xg72x27 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I204778367 |
| authorships[5].institutions[0].country_code | NO |
| authorships[5].institutions[0].display_name | Norwegian University of Science and Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Raghavendra Ramachandra |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Information Security and Communication Technology, Norwegian University of Science and Technology, 2815, Gjøvik, Norway |
| authorships[6].author.id | https://openalex.org/A5002829243 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-0686-7046 |
| authorships[6].author.display_name | Bikramaditya Ghosh |
| authorships[6].countries | IN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I244572783 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Finance, Symbiosis Institute of Business Management, Symbiosis International (Deemed University), Bengaluru, 560100, India |
| authorships[6].institutions[0].id | https://openalex.org/I244572783 |
| authorships[6].institutions[0].ror | https://ror.org/005r2ww51 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I244572783 |
| authorships[6].institutions[0].country_code | IN |
| authorships[6].institutions[0].display_name | Symbiosis International University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Bikramaditya Ghosh |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Finance, Symbiosis Institute of Business Management, Symbiosis International (Deemed University), Bengaluru, 560100, India |
| authorships[7].author.id | https://openalex.org/A5013652463 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-9098-4482 |
| authorships[7].author.display_name | Arpan Saha |
| authorships[7].countries | IN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I114602248 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Pharmaceutical Chemistry, Bharat Pharmaceutical Technology, Tripura, 799130, India |
| authorships[7].institutions[0].id | https://openalex.org/I114602248 |
| authorships[7].institutions[0].ror | https://ror.org/00edfym28 |
| authorships[7].institutions[0].type | company |
| authorships[7].institutions[0].lineage | https://openalex.org/I114602248 |
| authorships[7].institutions[0].country_code | IN |
| authorships[7].institutions[0].display_name | Bharat Electronics (India) |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Arpan Saha |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Pharmaceutical Chemistry, Bharat Pharmaceutical Technology, Tripura, 799130, India |
| authorships[8].author.id | https://openalex.org/A5011546218 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-1227-2703 |
| authorships[8].author.display_name | Ram Bajpai |
| authorships[8].countries | GB |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I56007636 |
| authorships[8].affiliations[0].raw_affiliation_string | School of Medicine, Keele University, Keele, Newcastle, ST5 5BG, UK |
| authorships[8].institutions[0].id | https://openalex.org/I56007636 |
| authorships[8].institutions[0].ror | https://ror.org/00340yn33 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I56007636 |
| authorships[8].institutions[0].country_code | GB |
| authorships[8].institutions[0].display_name | Keele University |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Ram Bajpai |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | School of Medicine, Keele University, Keele, Newcastle, ST5 5BG, UK |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1038/s41598-024-74539-6 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Exploring online public survey lifestyle datasets with statistical analysis, machine learning and semantic ontology |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-23T05:10:03.516525 |
| primary_topic.id | https://openalex.org/T11980 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.9865000247955322 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3313 |
| primary_topic.subfield.display_name | Transportation |
| primary_topic.display_name | Human Mobility and Location-Based Analysis |
| related_works | https://openalex.org/W2003333417, https://openalex.org/W2378862226, https://openalex.org/W118236634, https://openalex.org/W2355326633, https://openalex.org/W2804669904, https://openalex.org/W2149777447, https://openalex.org/W2347456287, https://openalex.org/W2121651557, https://openalex.org/W2782969047, https://openalex.org/W4401210459 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1038/s41598-024-74539-6 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-024-74539-6 |
| primary_location.id | doi:10.1038/s41598-024-74539-6 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-024-74539-6 |
| publication_date | 2024-10-15 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3094174263, https://openalex.org/W4225397979, https://openalex.org/W3031373376, https://openalex.org/W4214610981, https://openalex.org/W3014597060, https://openalex.org/W4210270982, https://openalex.org/W4223481748, https://openalex.org/W3203310594, https://openalex.org/W3048741722, https://openalex.org/W3119752554, https://openalex.org/W3194507209, https://openalex.org/W3155857257, https://openalex.org/W3203689811, https://openalex.org/W3138442116, https://openalex.org/W4211106541, https://openalex.org/W2028511812, https://openalex.org/W2946212439, https://openalex.org/W3021769827, https://openalex.org/W2986851966, https://openalex.org/W3021083477, https://openalex.org/W1529026127, https://openalex.org/W1986211833, https://openalex.org/W2140405352, https://openalex.org/W1601063618, https://openalex.org/W2802772536, https://openalex.org/W3176549743, https://openalex.org/W4309474892, https://openalex.org/W2166787113, https://openalex.org/W2003233718, https://openalex.org/W3157693939, https://openalex.org/W2136132422, https://openalex.org/W3128701031, https://openalex.org/W4283360637, https://openalex.org/W2159243388, https://openalex.org/W2129310294, https://openalex.org/W4386318926, https://openalex.org/W4225759316, https://openalex.org/W4226433472, https://openalex.org/W4210894032 |
| referenced_works_count | 39 |
| abstract_inverted_index.a | 14, 51, 125, 131, 138, 177 |
| abstract_inverted_index.44 | 83 |
| abstract_inverted_index.An | 56 |
| abstract_inverted_index.In | 249 |
| abstract_inverted_index.an | 158 |
| abstract_inverted_index.in | 17, 137, 278 |
| abstract_inverted_index.of | 20, 29, 82, 108, 170, 204, 283 |
| abstract_inverted_index.on | 50, 209 |
| abstract_inverted_index.to | 5, 34, 89 |
| abstract_inverted_index.96% | 135 |
| abstract_inverted_index.OWL | 159 |
| abstract_inverted_index.SVM | 154 |
| abstract_inverted_index.The | 22, 79, 142, 174, 192, 212, 262 |
| abstract_inverted_index.and | 37, 77, 85, 98, 106, 124, 168, 182, 206, 222, 227, 242, 246, 252, 281 |
| abstract_inverted_index.for | 112, 152, 179, 218 |
| abstract_inverted_index.has | 25 |
| abstract_inverted_index.the | 6, 18, 47, 118, 153, 165, 171, 190, 201, 233, 259, 279 |
| abstract_inverted_index.via | 74 |
| abstract_inverted_index.was | 60, 86 |
| abstract_inverted_index.(web | 160 |
| abstract_inverted_index.Data | 92 |
| abstract_inverted_index.This | 31 |
| abstract_inverted_index.data | 63, 184, 219 |
| abstract_inverted_index.five | 122 |
| abstract_inverted_index.from | 53, 64, 185 |
| abstract_inverted_index.into | 121, 268 |
| abstract_inverted_index.many | 27 |
| abstract_inverted_index.over | 71 |
| abstract_inverted_index.risk | 285 |
| abstract_inverted_index.role | 16 |
| abstract_inverted_index.were | 93, 195 |
| abstract_inverted_index.with | 10, 41, 101, 130, 197 |
| abstract_inverted_index.(PCA) | 105 |
| abstract_inverted_index.(SVM) | 129 |
| abstract_inverted_index.(with | 67 |
| abstract_inverted_index.1,767 | 68 |
| abstract_inverted_index.1,834 | 65 |
| abstract_inverted_index.Local | 143 |
| abstract_inverted_index.aimed | 33 |
| abstract_inverted_index.among | 44 |
| abstract_inverted_index.bias. | 229 |
| abstract_inverted_index.data. | 173 |
| abstract_inverted_index.local | 150 |
| abstract_inverted_index.media | 76 |
| abstract_inverted_index.model | 155 |
| abstract_inverted_index.study | 32, 175 |
| abstract_inverted_index.three | 72 |
| abstract_inverted_index.using | 95 |
| abstract_inverted_index.while | 224 |
| abstract_inverted_index.(LIME) | 147 |
| abstract_inverted_index.India. | 55 |
| abstract_inverted_index.aiding | 277 |
| abstract_inverted_index.during | 46, 189, 258 |
| abstract_inverted_index.email. | 78 |
| abstract_inverted_index.ensure | 90 |
| abstract_inverted_index.global | 7 |
| abstract_inverted_index.health | 8, 271 |
| abstract_inverted_index.impact | 256 |
| abstract_inverted_index.kernel | 133 |
| abstract_inverted_index.linear | 132 |
| abstract_inverted_index.mental | 210, 270 |
| abstract_inverted_index.method | 215 |
| abstract_inverted_index.months | 73 |
| abstract_inverted_index.offers | 265 |
| abstract_inverted_index.online | 57, 186, 213, 275 |
| abstract_inverted_index.proved | 216 |
| abstract_inverted_index.public | 58, 187 |
| abstract_inverted_index.sample | 52 |
| abstract_inverted_index.social | 75 |
| abstract_inverted_index.survey | 59, 80, 172, 214 |
| abstract_inverted_index.target | 234 |
| abstract_inverted_index.vector | 127 |
| abstract_inverted_index.(ANOVA) | 110 |
| abstract_inverted_index.Indians | 45 |
| abstract_inverted_index.K-means | 115 |
| abstract_inverted_index.burden, | 9 |
| abstract_inverted_index.crucial | 15 |
| abstract_inverted_index.dataset | 120 |
| abstract_inverted_index.digital | 240 |
| abstract_inverted_index.divided | 117 |
| abstract_inverted_index.errors. | 248 |
| abstract_inverted_index.factors | 12, 39, 194, 254 |
| abstract_inverted_index.feature | 113 |
| abstract_inverted_index.health. | 211 |
| abstract_inverted_index.machine | 99, 128 |
| abstract_inverted_index.methods | 97 |
| abstract_inverted_index.playing | 13 |
| abstract_inverted_index.support | 126 |
| abstract_inverted_index.surveys | 188 |
| abstract_inverted_index.through | 273 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.COVID-19 | 23, 260 |
| abstract_inverted_index.Kolkata, | 54 |
| abstract_inverted_index.accuracy | 136 |
| abstract_inverted_index.achieved | 134 |
| abstract_inverted_index.analysis | 104, 107 |
| abstract_inverted_index.analyzed | 94 |
| abstract_inverted_index.diseases | 2 |
| abstract_inverted_index.employed | 111 |
| abstract_inverted_index.ensuring | 239 |
| abstract_inverted_index.factors. | 286 |
| abstract_inverted_index.focusing | 49 |
| abstract_inverted_index.identify | 35 |
| abstract_inverted_index.included | 231 |
| abstract_inverted_index.insights | 267 |
| abstract_inverted_index.language | 237 |
| abstract_inverted_index.ontology | 161, 163 |
| abstract_inverted_index.pandemic | 24 |
| abstract_inverted_index.pipeline | 178 |
| abstract_inverted_index.privacy. | 91 |
| abstract_inverted_index.problem. | 141 |
| abstract_inverted_index.provided | 149 |
| abstract_inverted_index.reaching | 232 |
| abstract_inverted_index.reducing | 228 |
| abstract_inverted_index.retained | 69 |
| abstract_inverted_index.sampling | 247 |
| abstract_inverted_index.scalable | 274 |
| abstract_inverted_index.semantic | 166 |
| abstract_inverted_index.surveys, | 276 |
| abstract_inverted_index.symptoms | 43 |
| abstract_inverted_index.valuable | 266 |
| abstract_inverted_index.variance | 109 |
| abstract_inverted_index.Lifestyle | 1 |
| abstract_inverted_index.algorithm | 148 |
| abstract_inverted_index.anonymity | 226 |
| abstract_inverted_index.barriers, | 238 |
| abstract_inverted_index.clusters, | 123 |
| abstract_inverted_index.component | 103 |
| abstract_inverted_index.consisted | 81 |
| abstract_inverted_index.dishonest | 244 |
| abstract_inverted_index.gathering | 62 |
| abstract_inverted_index.influence | 203 |
| abstract_inverted_index.language) | 162 |
| abstract_inverted_index.learning, | 100 |
| abstract_inverted_index.lifestyle | 11, 36, 205, 251 |
| abstract_inverted_index.literacy, | 241 |
| abstract_inverted_index.pandemic, | 48 |
| abstract_inverted_index.pandemic. | 191, 261 |
| abstract_inverted_index.principal | 102 |
| abstract_inverted_index.questions | 84 |
| abstract_inverted_index.reasoning | 169 |
| abstract_inverted_index.responses | 245 |
| abstract_inverted_index.study’s | 263 |
| abstract_inverted_index.symptoms, | 199 |
| abstract_inverted_index.variables | 208 |
| abstract_inverted_index.Challenges | 230 |
| abstract_inverted_index.addressing | 236, 269 |
| abstract_inverted_index.analyzing, | 181 |
| abstract_inverted_index.associated | 40 |
| abstract_inverted_index.challenges | 272 |
| abstract_inverted_index.clustering | 116 |
| abstract_inverted_index.conducted, | 61 |
| abstract_inverted_index.contribute | 4 |
| abstract_inverted_index.correlated | 196 |
| abstract_inverted_index.depression | 42, 257, 284 |
| abstract_inverted_index.depressive | 198 |
| abstract_inverted_index.identified | 193 |
| abstract_inverted_index.mitigating | 243 |
| abstract_inverted_index.mitigation | 282 |
| abstract_inverted_index.selection. | 114 |
| abstract_inverted_index.anonymously | 88 |
| abstract_inverted_index.collecting, | 180 |
| abstract_inverted_index.collection, | 220 |
| abstract_inverted_index.conclusion, | 250 |
| abstract_inverted_index.demographic | 38, 207, 253 |
| abstract_inverted_index.depression. | 21, 30 |
| abstract_inverted_index.development | 19 |
| abstract_inverted_index.distributed | 87 |
| abstract_inverted_index.facilitated | 164 |
| abstract_inverted_index.highlighted | 176 |
| abstract_inverted_index.intensified | 26 |
| abstract_inverted_index.maintaining | 225 |
| abstract_inverted_index.methodology | 264 |
| abstract_inverted_index.multi-class | 139 |
| abstract_inverted_index.population, | 235 |
| abstract_inverted_index.significant | 202 |
| abstract_inverted_index.statistical | 96 |
| abstract_inverted_index.Explanations | 146 |
| abstract_inverted_index.advantageous | 217 |
| abstract_inverted_index.determinants | 28 |
| abstract_inverted_index.explanations | 151 |
| abstract_inverted_index.illustrating | 200 |
| abstract_inverted_index.participants | 66 |
| abstract_inverted_index.predictions. | 156 |
| abstract_inverted_index.representing | 183 |
| abstract_inverted_index.Additionally, | 157 |
| abstract_inverted_index.Interpretable | 144 |
| abstract_inverted_index.pre-processed | 119 |
| abstract_inverted_index.significantly | 3, 255 |
| abstract_inverted_index.understanding | 280 |
| abstract_inverted_index.Model-agnostic | 145 |
| abstract_inverted_index.classification | 140 |
| abstract_inverted_index.post-cleaning) | 70 |
| abstract_inverted_index.representation | 167 |
| abstract_inverted_index.visualization, | 221 |
| abstract_inverted_index.cost-effectiveness | 223 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5063683767 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 9 |
| corresponding_institution_ids | https://openalex.org/I200650556 |
| citation_normalized_percentile.value | 0.79678105 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |