Exploring phase transition pathways in benzene crystals using the artificial force induced reaction method with general AMBER force fields Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.26434/chemrxiv-2025-zf3q5
Systematic automated exploration of phase transition pathways enables the elucidation and visualization of potential energy landscapes in crystals. This allows evaluation of not only thermodynamic stability, but also kinetic stability and thermal behavior of metastable structures. Developing computational tools for such exploration is therefore a key challenge in computational chemistry. In this work, we extend the Artificial Force Induced Reaction (AFIR) method, previously applied to unimolecular gas-phase reactions, organic synthetic reactions, and inorganic or covalent crystal transitions, to organic molecular crystals. Owing to the large number of atoms in unit cells, their application to organic molecular crystals has been difficult. To overcome this, we combined AFIR with a classical force field, general AMBER force field. By applying the method to benzene crystals, we successfully obtained a phase transition pathway network that includes the standard-pressure Benzene I phase and all experimentally known high-pressure structures. We visualized the overall potential energy landscape using the disconnectivity graph, and further discussed the transition behavior between these phases by extracting minimum energy pathways.
Related Topics
- Type
- preprint
- Landing Page
- https://doi.org/10.26434/chemrxiv-2025-zf3q5
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W4415297827
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415297827Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.26434/chemrxiv-2025-zf3q5Digital Object Identifier
- Title
-
Exploring phase transition pathways in benzene crystals using the artificial force induced reaction method with general AMBER force fieldsWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-17Full publication date if available
- Authors
-
Shoya Kondo, T. Hasegawa, Satoshi MaedaList of authors in order
- Landing page
-
https://doi.org/10.26434/chemrxiv-2025-zf3q5Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.26434/chemrxiv-2025-zf3q5Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415297827 |
|---|---|
| doi | https://doi.org/10.26434/chemrxiv-2025-zf3q5 |
| ids.doi | https://doi.org/10.26434/chemrxiv-2025-zf3q5 |
| ids.openalex | https://openalex.org/W4415297827 |
| fwci | 0.0 |
| type | preprint |
| title | Exploring phase transition pathways in benzene crystals using the artificial force induced reaction method with general AMBER force fields |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11878 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.9354000091552734 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Solid-state spectroscopy and crystallography |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | doi:10.26434/chemrxiv-2025-zf3q5 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.26434/chemrxiv-2025-zf3q5 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5015060079 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Shoya Kondo |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I205349734 |
| authorships[0].affiliations[0].raw_affiliation_string | Hokkaido University |
| authorships[0].institutions[0].id | https://openalex.org/I205349734 |
| authorships[0].institutions[0].ror | https://ror.org/02e16g702 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I205349734 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | Hokkaido University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shoya Kondo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Hokkaido University |
| authorships[1].author.id | https://openalex.org/A5019456043 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0745-3857 |
| authorships[1].author.display_name | T. Hasegawa |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I205349734 |
| authorships[1].affiliations[0].raw_affiliation_string | Hokkaido University |
| authorships[1].institutions[0].id | https://openalex.org/I205349734 |
| authorships[1].institutions[0].ror | https://ror.org/02e16g702 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I205349734 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | Hokkaido University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Taisuke Hasegawa |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Hokkaido University |
| authorships[2].author.id | https://openalex.org/A5007539161 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8822-1147 |
| authorships[2].author.display_name | Satoshi Maeda |
| authorships[2].countries | JP |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I205349734 |
| authorships[2].affiliations[0].raw_affiliation_string | Hokkaido University |
| authorships[2].institutions[0].id | https://openalex.org/I205349734 |
| authorships[2].institutions[0].ror | https://ror.org/02e16g702 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I205349734 |
| authorships[2].institutions[0].country_code | JP |
| authorships[2].institutions[0].display_name | Hokkaido University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Satoshi Maeda |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Hokkaido University |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.26434/chemrxiv-2025-zf3q5 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-18T00:00:00 |
| display_name | Exploring phase transition pathways in benzene crystals using the artificial force induced reaction method with general AMBER force fields |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11878 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.9354000091552734 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Solid-state spectroscopy and crystallography |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.26434/chemrxiv-2025-zf3q5 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.26434/chemrxiv-2025-zf3q5 |
| primary_location.id | doi:10.26434/chemrxiv-2025-zf3q5 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.26434/chemrxiv-2025-zf3q5 |
| publication_date | 2025-10-17 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.I | 135 |
| abstract_inverted_index.a | 44, 107, 125 |
| abstract_inverted_index.By | 115 |
| abstract_inverted_index.In | 50 |
| abstract_inverted_index.To | 100 |
| abstract_inverted_index.We | 143 |
| abstract_inverted_index.by | 163 |
| abstract_inverted_index.in | 16, 47, 88 |
| abstract_inverted_index.is | 42 |
| abstract_inverted_index.of | 3, 12, 21, 33, 86 |
| abstract_inverted_index.or | 73 |
| abstract_inverted_index.to | 64, 77, 82, 93, 119 |
| abstract_inverted_index.we | 53, 103, 122 |
| abstract_inverted_index.all | 138 |
| abstract_inverted_index.and | 10, 30, 71, 137, 154 |
| abstract_inverted_index.but | 26 |
| abstract_inverted_index.for | 39 |
| abstract_inverted_index.has | 97 |
| abstract_inverted_index.key | 45 |
| abstract_inverted_index.not | 22 |
| abstract_inverted_index.the | 8, 55, 83, 117, 132, 145, 151, 157 |
| abstract_inverted_index.AFIR | 105 |
| abstract_inverted_index.This | 18 |
| abstract_inverted_index.also | 27 |
| abstract_inverted_index.been | 98 |
| abstract_inverted_index.only | 23 |
| abstract_inverted_index.such | 40 |
| abstract_inverted_index.that | 130 |
| abstract_inverted_index.this | 51 |
| abstract_inverted_index.unit | 89 |
| abstract_inverted_index.with | 106 |
| abstract_inverted_index.AMBER | 112 |
| abstract_inverted_index.Force | 57 |
| abstract_inverted_index.Owing | 81 |
| abstract_inverted_index.atoms | 87 |
| abstract_inverted_index.force | 109, 113 |
| abstract_inverted_index.known | 140 |
| abstract_inverted_index.large | 84 |
| abstract_inverted_index.phase | 4, 126, 136 |
| abstract_inverted_index.their | 91 |
| abstract_inverted_index.these | 161 |
| abstract_inverted_index.this, | 102 |
| abstract_inverted_index.tools | 38 |
| abstract_inverted_index.using | 150 |
| abstract_inverted_index.work, | 52 |
| abstract_inverted_index.(AFIR) | 60 |
| abstract_inverted_index.allows | 19 |
| abstract_inverted_index.cells, | 90 |
| abstract_inverted_index.energy | 14, 148, 166 |
| abstract_inverted_index.extend | 54 |
| abstract_inverted_index.field, | 110 |
| abstract_inverted_index.field. | 114 |
| abstract_inverted_index.graph, | 153 |
| abstract_inverted_index.method | 118 |
| abstract_inverted_index.number | 85 |
| abstract_inverted_index.phases | 162 |
| abstract_inverted_index.Benzene | 134 |
| abstract_inverted_index.Induced | 58 |
| abstract_inverted_index.applied | 63 |
| abstract_inverted_index.benzene | 120 |
| abstract_inverted_index.between | 160 |
| abstract_inverted_index.crystal | 75 |
| abstract_inverted_index.enables | 7 |
| abstract_inverted_index.further | 155 |
| abstract_inverted_index.general | 111 |
| abstract_inverted_index.kinetic | 28 |
| abstract_inverted_index.method, | 61 |
| abstract_inverted_index.minimum | 165 |
| abstract_inverted_index.network | 129 |
| abstract_inverted_index.organic | 68, 78, 94 |
| abstract_inverted_index.overall | 146 |
| abstract_inverted_index.pathway | 128 |
| abstract_inverted_index.thermal | 31 |
| abstract_inverted_index.Reaction | 59 |
| abstract_inverted_index.applying | 116 |
| abstract_inverted_index.behavior | 32, 159 |
| abstract_inverted_index.combined | 104 |
| abstract_inverted_index.covalent | 74 |
| abstract_inverted_index.crystals | 96 |
| abstract_inverted_index.includes | 131 |
| abstract_inverted_index.obtained | 124 |
| abstract_inverted_index.overcome | 101 |
| abstract_inverted_index.pathways | 6 |
| abstract_inverted_index.automated | 1 |
| abstract_inverted_index.challenge | 46 |
| abstract_inverted_index.classical | 108 |
| abstract_inverted_index.crystals, | 121 |
| abstract_inverted_index.crystals. | 17, 80 |
| abstract_inverted_index.discussed | 156 |
| abstract_inverted_index.gas-phase | 66 |
| abstract_inverted_index.inorganic | 72 |
| abstract_inverted_index.landscape | 149 |
| abstract_inverted_index.molecular | 79, 95 |
| abstract_inverted_index.pathways. | 167 |
| abstract_inverted_index.potential | 13, 147 |
| abstract_inverted_index.stability | 29 |
| abstract_inverted_index.synthetic | 69 |
| abstract_inverted_index.therefore | 43 |
| abstract_inverted_index.Artificial | 56 |
| abstract_inverted_index.Developing | 36 |
| abstract_inverted_index.Systematic | 0 |
| abstract_inverted_index.chemistry. | 49 |
| abstract_inverted_index.difficult. | 99 |
| abstract_inverted_index.evaluation | 20 |
| abstract_inverted_index.extracting | 164 |
| abstract_inverted_index.landscapes | 15 |
| abstract_inverted_index.metastable | 34 |
| abstract_inverted_index.previously | 62 |
| abstract_inverted_index.reactions, | 67, 70 |
| abstract_inverted_index.stability, | 25 |
| abstract_inverted_index.transition | 5, 127, 158 |
| abstract_inverted_index.visualized | 144 |
| abstract_inverted_index.application | 92 |
| abstract_inverted_index.elucidation | 9 |
| abstract_inverted_index.exploration | 2, 41 |
| abstract_inverted_index.structures. | 35, 142 |
| abstract_inverted_index.successfully | 123 |
| abstract_inverted_index.transitions, | 76 |
| abstract_inverted_index.unimolecular | 65 |
| abstract_inverted_index.computational | 37, 48 |
| abstract_inverted_index.high-pressure | 141 |
| abstract_inverted_index.thermodynamic | 24 |
| abstract_inverted_index.visualization | 11 |
| abstract_inverted_index.experimentally | 139 |
| abstract_inverted_index.disconnectivity | 152 |
| abstract_inverted_index.standard-pressure | 133 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.48354412 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |