Exploring Radial Asymmetry in MR Diffusion Tensor Imaging and Its Impact on the Interpretation of Glymphatic Mechanisms
Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1002/jmri.29203
Background Diffusion imaging holds great potential for the non‐invasive assessment of the glymphatic system in humans. One technique, diffusion tensor imaging along the perivascular space (DTI‐ALPS), has introduced the ALPS‐index, a novel metric for evaluating diffusivity within the perivascular space. However, it still needs to be established whether the observed reduction in the ALPS‐index reflects axonal changes, a common occurrence in neurodegenerative diseases. Purpose To determine whether axonal alterations can influence change in the ALPS‐index. Study Type Retrospective. Population 100 participants (78 cognitively normal and 22 with mild cognitive impairments) aged 50–90 years old. Field Strength/Sequence 3T; diffusion‐weighted single‐shot spin‐echo echo‐planar imaging sequence, T1‐weighted images (MP‐RAGE). Assessment The ratio of two radial diffusivities of the diffusion tensor (i.e., λ2/λ3) across major white matter tracts with distinct venous/perivenous anatomy that fulfill (ALPS‐tracts) and do not fulfill (control tracts) ALPS‐index anatomical assumptions were analyzed. Statistical Tests To investigate the correlation between λ2/λ3 and age/cognitive function (RAVLT) while accounting for the effect of age, linear regression was implemented to remove the age effect from each variable. Pearson correlation analysis was conducted on the residuals obtained from the linear regression. Statistical significance was set at p < 0.05. Results λ2 was ~50% higher than λ3 and demonstrated a consistent pattern across both ALPS and control tracts. Additionally, in both ALPS and control tracts a reduction in the λ2/λ3 ratio was observed with advancing age ( r = −0.39, r = −0.29, association and forceps tract, respectively) and decreased memory function ( r = 0.24, r = 0.27, association and forceps tract, respectively). Data Conclusions The results unveil a widespread radial asymmetry of white matter tracts that changes with aging and neurodegeration. These findings highlight that the ALPS‐index may not solely reflect changes in the diffusivity of the perivascular space but may also incorporate axonal contributions. Level of Evidence 3 Technical Efficacy Stage 2
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/jmri.29203
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.29203
- OA Status
- hybrid
- Cited By
- 45
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390405681
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390405681Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/jmri.29203Digital Object Identifier
- Title
-
Exploring Radial Asymmetry in
MR Diffusion Tensor Imaging and Its Impact on the Interpretation of Glymphatic MechanismsWork title - Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-29Full publication date if available
- Authors
-
Adam M. Wright, Yu‐Chien Wu, Nan‐kuei Chen, Qiuting WenList of authors in order
- Landing page
-
https://doi.org/10.1002/jmri.29203Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.29203Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.29203Direct OA link when available
- Concepts
-
Diffusion MRI, White matter, Nuclear magnetic resonance, Nuclear medicine, Fasciculus, Magnetic resonance imaging, Physics, Fractional anisotropy, Psychology, Medicine, Neuroscience, RadiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
45Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 29, 2024: 16Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390405681 |
|---|---|
| doi | https://doi.org/10.1002/jmri.29203 |
| ids.doi | https://doi.org/10.1002/jmri.29203 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38156600 |
| ids.openalex | https://openalex.org/W4390405681 |
| fwci | 9.46493787 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000368 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Aged |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D005260 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Female |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D008875 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Middle Aged |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D008297 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Male |
| mesh[5].qualifier_ui | Q000379 |
| mesh[5].descriptor_ui | D056324 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | methods |
| mesh[5].descriptor_name | Diffusion Tensor Imaging |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000369 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Aged, 80 and over |
| mesh[7].qualifier_ui | Q000000981 |
| mesh[7].descriptor_ui | D000077502 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | diagnostic imaging |
| mesh[7].descriptor_name | Glymphatic System |
| mesh[8].qualifier_ui | Q000000981 |
| mesh[8].descriptor_ui | D060825 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | diagnostic imaging |
| mesh[8].descriptor_name | Cognitive Dysfunction |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D012189 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Retrospective Studies |
| mesh[10].qualifier_ui | Q000000981 |
| mesh[10].descriptor_ui | D066127 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | diagnostic imaging |
| mesh[10].descriptor_name | White Matter |
| mesh[11].qualifier_ui | Q000000981 |
| mesh[11].descriptor_ui | D001921 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | diagnostic imaging |
| mesh[11].descriptor_name | Brain |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D001369 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Axons |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D016880 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Anisotropy |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D017352 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Echo-Planar Imaging |
| mesh[15].qualifier_ui | Q000379 |
| mesh[15].descriptor_ui | D007091 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | methods |
| mesh[15].descriptor_name | Image Processing, Computer-Assisted |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D006801 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Humans |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D000368 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Aged |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D005260 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Female |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D008875 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Middle Aged |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D008297 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Male |
| mesh[21].qualifier_ui | Q000379 |
| mesh[21].descriptor_ui | D056324 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | methods |
| mesh[21].descriptor_name | Diffusion Tensor Imaging |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D000369 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Aged, 80 and over |
| mesh[23].qualifier_ui | Q000000981 |
| mesh[23].descriptor_ui | D000077502 |
| mesh[23].is_major_topic | True |
| mesh[23].qualifier_name | diagnostic imaging |
| mesh[23].descriptor_name | Glymphatic System |
| mesh[24].qualifier_ui | Q000000981 |
| mesh[24].descriptor_ui | D060825 |
| mesh[24].is_major_topic | True |
| mesh[24].qualifier_name | diagnostic imaging |
| mesh[24].descriptor_name | Cognitive Dysfunction |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D012189 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Retrospective Studies |
| mesh[26].qualifier_ui | Q000000981 |
| mesh[26].descriptor_ui | D066127 |
| mesh[26].is_major_topic | True |
| mesh[26].qualifier_name | diagnostic imaging |
| mesh[26].descriptor_name | White Matter |
| mesh[27].qualifier_ui | Q000000981 |
| mesh[27].descriptor_ui | D001921 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | diagnostic imaging |
| mesh[27].descriptor_name | Brain |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D001369 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Axons |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D016880 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Anisotropy |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D017352 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | Echo-Planar Imaging |
| mesh[31].qualifier_ui | Q000379 |
| mesh[31].descriptor_ui | D007091 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | methods |
| mesh[31].descriptor_name | Image Processing, Computer-Assisted |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D006801 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Humans |
| mesh[33].qualifier_ui | |
| mesh[33].descriptor_ui | D000368 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | |
| mesh[33].descriptor_name | Aged |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D005260 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Female |
| mesh[35].qualifier_ui | |
| mesh[35].descriptor_ui | D008875 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | |
| mesh[35].descriptor_name | Middle Aged |
| mesh[36].qualifier_ui | |
| mesh[36].descriptor_ui | D008297 |
| mesh[36].is_major_topic | False |
| mesh[36].qualifier_name | |
| mesh[36].descriptor_name | Male |
| mesh[37].qualifier_ui | Q000379 |
| mesh[37].descriptor_ui | D056324 |
| mesh[37].is_major_topic | True |
| mesh[37].qualifier_name | methods |
| mesh[37].descriptor_name | Diffusion Tensor Imaging |
| mesh[38].qualifier_ui | |
| mesh[38].descriptor_ui | D000369 |
| mesh[38].is_major_topic | False |
| mesh[38].qualifier_name | |
| mesh[38].descriptor_name | Aged, 80 and over |
| mesh[39].qualifier_ui | Q000000981 |
| mesh[39].descriptor_ui | D000077502 |
| mesh[39].is_major_topic | True |
| mesh[39].qualifier_name | diagnostic imaging |
| mesh[39].descriptor_name | Glymphatic System |
| mesh[40].qualifier_ui | Q000000981 |
| mesh[40].descriptor_ui | D060825 |
| mesh[40].is_major_topic | True |
| mesh[40].qualifier_name | diagnostic imaging |
| mesh[40].descriptor_name | Cognitive Dysfunction |
| mesh[41].qualifier_ui | |
| mesh[41].descriptor_ui | D012189 |
| mesh[41].is_major_topic | False |
| mesh[41].qualifier_name | |
| mesh[41].descriptor_name | Retrospective Studies |
| mesh[42].qualifier_ui | Q000000981 |
| mesh[42].descriptor_ui | D066127 |
| mesh[42].is_major_topic | True |
| mesh[42].qualifier_name | diagnostic imaging |
| mesh[42].descriptor_name | White Matter |
| mesh[43].qualifier_ui | Q000000981 |
| mesh[43].descriptor_ui | D001921 |
| mesh[43].is_major_topic | False |
| mesh[43].qualifier_name | diagnostic imaging |
| mesh[43].descriptor_name | Brain |
| mesh[44].qualifier_ui | |
| mesh[44].descriptor_ui | D001369 |
| mesh[44].is_major_topic | False |
| mesh[44].qualifier_name | |
| mesh[44].descriptor_name | Axons |
| mesh[45].qualifier_ui | |
| mesh[45].descriptor_ui | D016880 |
| mesh[45].is_major_topic | False |
| mesh[45].qualifier_name | |
| mesh[45].descriptor_name | Anisotropy |
| mesh[46].qualifier_ui | |
| mesh[46].descriptor_ui | D017352 |
| mesh[46].is_major_topic | False |
| mesh[46].qualifier_name | |
| mesh[46].descriptor_name | Echo-Planar Imaging |
| mesh[47].qualifier_ui | Q000379 |
| mesh[47].descriptor_ui | D007091 |
| mesh[47].is_major_topic | False |
| mesh[47].qualifier_name | methods |
| mesh[47].descriptor_name | Image Processing, Computer-Assisted |
| mesh[48].qualifier_ui | |
| mesh[48].descriptor_ui | D006801 |
| mesh[48].is_major_topic | False |
| mesh[48].qualifier_name | |
| mesh[48].descriptor_name | Humans |
| mesh[49].qualifier_ui | |
| mesh[49].descriptor_ui | D000368 |
| mesh[49].is_major_topic | False |
| mesh[49].qualifier_name | |
| mesh[49].descriptor_name | Aged |
| type | article |
| title | Exploring Radial Asymmetry in |
| biblio.issue | 4 |
| biblio.volume | 60 |
| biblio.last_page | 1441 |
| biblio.first_page | 1432 |
| topics[0].id | https://openalex.org/T11406 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2804 |
| topics[0].subfield.display_name | Cellular and Molecular Neuroscience |
| topics[0].display_name | Cerebrospinal fluid and hydrocephalus |
| topics[1].id | https://openalex.org/T11304 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9998999834060669 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Advanced Neuroimaging Techniques and Applications |
| topics[2].id | https://openalex.org/T11833 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9998000264167786 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2739 |
| topics[2].subfield.display_name | Public Health, Environmental and Occupational Health |
| topics[2].display_name | Spinal Dysraphism and Malformations |
| is_xpac | False |
| apc_list.value | 3500 |
| apc_list.currency | USD |
| apc_list.value_usd | 3500 |
| apc_paid.value | 3500 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3500 |
| concepts[0].id | https://openalex.org/C149550507 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7568258047103882 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q899360 |
| concepts[0].display_name | Diffusion MRI |
| concepts[1].id | https://openalex.org/C2781192897 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5766457915306091 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q822050 |
| concepts[1].display_name | White matter |
| concepts[2].id | https://openalex.org/C46141821 |
| concepts[2].level | 1 |
| concepts[2].score | 0.45736178755760193 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q209402 |
| concepts[2].display_name | Nuclear magnetic resonance |
| concepts[3].id | https://openalex.org/C2989005 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4185873568058014 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q214963 |
| concepts[3].display_name | Nuclear medicine |
| concepts[4].id | https://openalex.org/C2779497037 |
| concepts[4].level | 5 |
| concepts[4].score | 0.41512784361839294 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1397368 |
| concepts[4].display_name | Fasciculus |
| concepts[5].id | https://openalex.org/C143409427 |
| concepts[5].level | 2 |
| concepts[5].score | 0.384876012802124 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q161238 |
| concepts[5].display_name | Magnetic resonance imaging |
| concepts[6].id | https://openalex.org/C121332964 |
| concepts[6].level | 0 |
| concepts[6].score | 0.38441982865333557 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[6].display_name | Physics |
| concepts[7].id | https://openalex.org/C89916169 |
| concepts[7].level | 4 |
| concepts[7].score | 0.37936604022979736 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q17014600 |
| concepts[7].display_name | Fractional anisotropy |
| concepts[8].id | https://openalex.org/C15744967 |
| concepts[8].level | 0 |
| concepts[8].score | 0.35765141248703003 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[8].display_name | Psychology |
| concepts[9].id | https://openalex.org/C71924100 |
| concepts[9].level | 0 |
| concepts[9].score | 0.3402364253997803 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[9].display_name | Medicine |
| concepts[10].id | https://openalex.org/C169760540 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3341078460216522 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[10].display_name | Neuroscience |
| concepts[11].id | https://openalex.org/C126838900 |
| concepts[11].level | 1 |
| concepts[11].score | 0.13828599452972412 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[11].display_name | Radiology |
| keywords[0].id | https://openalex.org/keywords/diffusion-mri |
| keywords[0].score | 0.7568258047103882 |
| keywords[0].display_name | Diffusion MRI |
| keywords[1].id | https://openalex.org/keywords/white-matter |
| keywords[1].score | 0.5766457915306091 |
| keywords[1].display_name | White matter |
| keywords[2].id | https://openalex.org/keywords/nuclear-magnetic-resonance |
| keywords[2].score | 0.45736178755760193 |
| keywords[2].display_name | Nuclear magnetic resonance |
| keywords[3].id | https://openalex.org/keywords/nuclear-medicine |
| keywords[3].score | 0.4185873568058014 |
| keywords[3].display_name | Nuclear medicine |
| keywords[4].id | https://openalex.org/keywords/fasciculus |
| keywords[4].score | 0.41512784361839294 |
| keywords[4].display_name | Fasciculus |
| keywords[5].id | https://openalex.org/keywords/magnetic-resonance-imaging |
| keywords[5].score | 0.384876012802124 |
| keywords[5].display_name | Magnetic resonance imaging |
| keywords[6].id | https://openalex.org/keywords/physics |
| keywords[6].score | 0.38441982865333557 |
| keywords[6].display_name | Physics |
| keywords[7].id | https://openalex.org/keywords/fractional-anisotropy |
| keywords[7].score | 0.37936604022979736 |
| keywords[7].display_name | Fractional anisotropy |
| keywords[8].id | https://openalex.org/keywords/psychology |
| keywords[8].score | 0.35765141248703003 |
| keywords[8].display_name | Psychology |
| keywords[9].id | https://openalex.org/keywords/medicine |
| keywords[9].score | 0.3402364253997803 |
| keywords[9].display_name | Medicine |
| keywords[10].id | https://openalex.org/keywords/neuroscience |
| keywords[10].score | 0.3341078460216522 |
| keywords[10].display_name | Neuroscience |
| keywords[11].id | https://openalex.org/keywords/radiology |
| keywords[11].score | 0.13828599452972412 |
| keywords[11].display_name | Radiology |
| language | en |
| locations[0].id | doi:10.1002/jmri.29203 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S132538424 |
| locations[0].source.issn | 1053-1807, 1522-2586 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1053-1807 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Magnetic Resonance Imaging |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.29203 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Magnetic Resonance Imaging |
| locations[0].landing_page_url | https://doi.org/10.1002/jmri.29203 |
| locations[1].id | pmid:38156600 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of magnetic resonance imaging : JMRI |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38156600 |
| locations[2].id | pmh:oai:europepmc.org:11286409 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306400806 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Europe PMC (PubMed Central) |
| locations[2].source.host_organization | https://openalex.org/I1303153112 |
| locations[2].source.host_organization_name | European Bioinformatics Institute |
| locations[2].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11213825 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5046196906 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9524-2210 |
| authorships[0].author.display_name | Adam M. Wright |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I219193219 |
| authorships[0].affiliations[0].raw_affiliation_string | Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4394709130, https://openalex.org/I55769427 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA |
| authorships[0].institutions[0].id | https://openalex.org/I4394709130 |
| authorships[0].institutions[0].ror | https://ror.org/02ets8c94 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4394709130, https://openalex.org/I592451 |
| authorships[0].institutions[0].country_code | |
| authorships[0].institutions[0].display_name | Indiana University School of Medicine |
| authorships[0].institutions[1].id | https://openalex.org/I55769427 |
| authorships[0].institutions[1].ror | https://ror.org/05gxnyn08 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I55769427, https://openalex.org/I592451 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | Indiana University – Purdue University Indianapolis |
| authorships[0].institutions[2].id | https://openalex.org/I219193219 |
| authorships[0].institutions[2].ror | https://ror.org/02dqehb95 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I219193219 |
| authorships[0].institutions[2].country_code | US |
| authorships[0].institutions[2].display_name | Purdue University West Lafayette |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Adam M. Wright |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA |
| authorships[1].author.id | https://openalex.org/A5074763683 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1084-2634 |
| authorships[1].author.display_name | Yu‐Chien Wu |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4394709130, https://openalex.org/I55769427 |
| authorships[1].affiliations[0].raw_affiliation_string | Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4394709130, https://openalex.org/I55769427 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I219193219 |
| authorships[1].affiliations[2].raw_affiliation_string | Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA |
| authorships[1].institutions[0].id | https://openalex.org/I4394709130 |
| authorships[1].institutions[0].ror | https://ror.org/02ets8c94 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4394709130, https://openalex.org/I592451 |
| authorships[1].institutions[0].country_code | |
| authorships[1].institutions[0].display_name | Indiana University School of Medicine |
| authorships[1].institutions[1].id | https://openalex.org/I55769427 |
| authorships[1].institutions[1].ror | https://ror.org/05gxnyn08 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I55769427, https://openalex.org/I592451 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | Indiana University – Purdue University Indianapolis |
| authorships[1].institutions[2].id | https://openalex.org/I219193219 |
| authorships[1].institutions[2].ror | https://ror.org/02dqehb95 |
| authorships[1].institutions[2].type | education |
| authorships[1].institutions[2].lineage | https://openalex.org/I219193219 |
| authorships[1].institutions[2].country_code | US |
| authorships[1].institutions[2].display_name | Purdue University West Lafayette |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yu‐Chien Wu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA |
| authorships[2].author.id | https://openalex.org/A5046255358 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6564-4219 |
| authorships[2].author.display_name | Nan‐kuei Chen |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I138006243 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA |
| authorships[2].institutions[0].id | https://openalex.org/I138006243 |
| authorships[2].institutions[0].ror | https://ror.org/03m2x1q45 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I138006243 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Arizona |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Nan‐Kuei Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA |
| authorships[3].author.id | https://openalex.org/A5000988295 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7885-4036 |
| authorships[3].author.display_name | Qiuting Wen |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4394709130, https://openalex.org/I55769427 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA |
| authorships[3].institutions[0].id | https://openalex.org/I4394709130 |
| authorships[3].institutions[0].ror | https://ror.org/02ets8c94 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4394709130, https://openalex.org/I592451 |
| authorships[3].institutions[0].country_code | |
| authorships[3].institutions[0].display_name | Indiana University School of Medicine |
| authorships[3].institutions[1].id | https://openalex.org/I55769427 |
| authorships[3].institutions[1].ror | https://ror.org/05gxnyn08 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I55769427, https://openalex.org/I592451 |
| authorships[3].institutions[1].country_code | US |
| authorships[3].institutions[1].display_name | Indiana University – Purdue University Indianapolis |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Qiuting Wen |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.29203 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-12-30T00:00:00 |
| display_name | Exploring Radial Asymmetry in |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11406 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2804 |
| primary_topic.subfield.display_name | Cellular and Molecular Neuroscience |
| primary_topic.display_name | Cerebrospinal fluid and hydrocephalus |
| related_works | https://openalex.org/W3031573373, https://openalex.org/W2017539237, https://openalex.org/W2607776059, https://openalex.org/W2000010321, https://openalex.org/W2125096937, https://openalex.org/W3102902644, https://openalex.org/W2389794309, https://openalex.org/W2765793352, https://openalex.org/W2358906680, https://openalex.org/W1994238149 |
| cited_by_count | 45 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 29 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 16 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1002/jmri.29203 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S132538424 |
| best_oa_location.source.issn | 1053-1807, 1522-2586 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1053-1807 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Magnetic Resonance Imaging |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.29203 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Magnetic Resonance Imaging |
| best_oa_location.landing_page_url | https://doi.org/10.1002/jmri.29203 |
| primary_location.id | doi:10.1002/jmri.29203 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S132538424 |
| primary_location.source.issn | 1053-1807, 1522-2586 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1053-1807 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Magnetic Resonance Imaging |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.29203 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Magnetic Resonance Imaging |
| primary_location.landing_page_url | https://doi.org/10.1002/jmri.29203 |
| publication_date | 2023-12-29 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2042683896, https://openalex.org/W2851624943, https://openalex.org/W2024955728, https://openalex.org/W4294573005, https://openalex.org/W4385833244, https://openalex.org/W4281250460, https://openalex.org/W4285030103, https://openalex.org/W2885225461, https://openalex.org/W4387392722, https://openalex.org/W3181078991, https://openalex.org/W2943559787, https://openalex.org/W2588487507, https://openalex.org/W2969356652, https://openalex.org/W2047152236, https://openalex.org/W2110431535, https://openalex.org/W2078380998, https://openalex.org/W3165946599, https://openalex.org/W4304014880, https://openalex.org/W4283463194, https://openalex.org/W2951259091, https://openalex.org/W1523483038, https://openalex.org/W2076361285, https://openalex.org/W2774400961, https://openalex.org/W2582524520, https://openalex.org/W2069494733, https://openalex.org/W2106763716, https://openalex.org/W2142059961, https://openalex.org/W2127613226, https://openalex.org/W2028411525, https://openalex.org/W2126080113, https://openalex.org/W2299191857, https://openalex.org/W2620812230, https://openalex.org/W2050645001, https://openalex.org/W2106841463, https://openalex.org/W2045407457, https://openalex.org/W2046529900, https://openalex.org/W2154452584, https://openalex.org/W6647220886, https://openalex.org/W2157035009, https://openalex.org/W4286852183, https://openalex.org/W1987202085, https://openalex.org/W2000133863, https://openalex.org/W2115017507 |
| referenced_works_count | 43 |
| abstract_inverted_index.( | 230, 246 |
| abstract_inverted_index.2 | 308 |
| abstract_inverted_index.3 | 304 |
| abstract_inverted_index.= | 232, 235, 248, 251 |
| abstract_inverted_index.a | 30, 57, 203, 219, 263 |
| abstract_inverted_index.p | 191 |
| abstract_inverted_index.r | 231, 234, 247, 250 |
| abstract_inverted_index.22 | 85 |
| abstract_inverted_index.To | 64, 144 |
| abstract_inverted_index.at | 190 |
| abstract_inverted_index.be | 45 |
| abstract_inverted_index.do | 132 |
| abstract_inverted_index.in | 14, 51, 60, 72, 213, 221, 288 |
| abstract_inverted_index.it | 41 |
| abstract_inverted_index.of | 10, 109, 113, 159, 267, 291, 302 |
| abstract_inverted_index.on | 178 |
| abstract_inverted_index.to | 44, 165 |
| abstract_inverted_index.(78 | 81 |
| abstract_inverted_index.100 | 79 |
| abstract_inverted_index.3T; | 96 |
| abstract_inverted_index.One | 16 |
| abstract_inverted_index.The | 107, 260 |
| abstract_inverted_index.age | 168, 229 |
| abstract_inverted_index.and | 84, 131, 150, 201, 209, 216, 238, 242, 254, 275 |
| abstract_inverted_index.but | 295 |
| abstract_inverted_index.can | 69 |
| abstract_inverted_index.for | 6, 33, 156 |
| abstract_inverted_index.has | 26 |
| abstract_inverted_index.may | 283, 296 |
| abstract_inverted_index.not | 133, 284 |
| abstract_inverted_index.set | 189 |
| abstract_inverted_index.the | 7, 11, 22, 28, 37, 48, 52, 73, 114, 146, 157, 167, 179, 183, 222, 281, 289, 292 |
| abstract_inverted_index.two | 110 |
| abstract_inverted_index.was | 163, 176, 188, 196, 225 |
| abstract_inverted_index.λ2 | 195 |
| abstract_inverted_index.λ3 | 200 |
| abstract_inverted_index.< | 192 |
| abstract_inverted_index.ALPS | 208, 215 |
| abstract_inverted_index.Data | 258 |
| abstract_inverted_index.Type | 76 |
| abstract_inverted_index.age, | 160 |
| abstract_inverted_index.aged | 90 |
| abstract_inverted_index.also | 297 |
| abstract_inverted_index.both | 207, 214 |
| abstract_inverted_index.each | 171 |
| abstract_inverted_index.from | 170, 182 |
| abstract_inverted_index.mild | 87 |
| abstract_inverted_index.old. | 93 |
| abstract_inverted_index.than | 199 |
| abstract_inverted_index.that | 128, 271, 280 |
| abstract_inverted_index.were | 140 |
| abstract_inverted_index.with | 86, 124, 227, 273 |
| abstract_inverted_index.~50% | 197 |
| abstract_inverted_index.0.05. | 193 |
| abstract_inverted_index.0.24, | 249 |
| abstract_inverted_index.0.27, | 252 |
| abstract_inverted_index.Field | 94 |
| abstract_inverted_index.Level | 301 |
| abstract_inverted_index.Stage | 307 |
| abstract_inverted_index.Study | 75 |
| abstract_inverted_index.Tests | 143 |
| abstract_inverted_index.These | 277 |
| abstract_inverted_index.aging | 274 |
| abstract_inverted_index.along | 21 |
| abstract_inverted_index.great | 4 |
| abstract_inverted_index.holds | 3 |
| abstract_inverted_index.major | 120 |
| abstract_inverted_index.needs | 43 |
| abstract_inverted_index.novel | 31 |
| abstract_inverted_index.ratio | 108, 224 |
| abstract_inverted_index.space | 24, 294 |
| abstract_inverted_index.still | 42 |
| abstract_inverted_index.while | 154 |
| abstract_inverted_index.white | 121, 268 |
| abstract_inverted_index.years | 92 |
| abstract_inverted_index.(i.e., | 117 |
| abstract_inverted_index.across | 119, 206 |
| abstract_inverted_index.axonal | 55, 67, 299 |
| abstract_inverted_index.change | 71 |
| abstract_inverted_index.common | 58 |
| abstract_inverted_index.effect | 158, 169 |
| abstract_inverted_index.higher | 198 |
| abstract_inverted_index.images | 104 |
| abstract_inverted_index.linear | 161, 184 |
| abstract_inverted_index.matter | 122, 269 |
| abstract_inverted_index.memory | 244 |
| abstract_inverted_index.metric | 32 |
| abstract_inverted_index.normal | 83 |
| abstract_inverted_index.radial | 111, 265 |
| abstract_inverted_index.remove | 166 |
| abstract_inverted_index.solely | 285 |
| abstract_inverted_index.space. | 39 |
| abstract_inverted_index.system | 13 |
| abstract_inverted_index.tensor | 19, 116 |
| abstract_inverted_index.tract, | 240, 256 |
| abstract_inverted_index.tracts | 123, 218, 270 |
| abstract_inverted_index.unveil | 262 |
| abstract_inverted_index.within | 36 |
| abstract_inverted_index.(RAVLT) | 153 |
| abstract_inverted_index.50–90 | 91 |
| abstract_inverted_index.Pearson | 173 |
| abstract_inverted_index.Purpose | 63 |
| abstract_inverted_index.Results | 194 |
| abstract_inverted_index.anatomy | 127 |
| abstract_inverted_index.between | 148 |
| abstract_inverted_index.changes | 272, 287 |
| abstract_inverted_index.control | 210, 217 |
| abstract_inverted_index.forceps | 239, 255 |
| abstract_inverted_index.fulfill | 129, 134 |
| abstract_inverted_index.humans. | 15 |
| abstract_inverted_index.imaging | 2, 20, 101 |
| abstract_inverted_index.pattern | 205 |
| abstract_inverted_index.reflect | 286 |
| abstract_inverted_index.results | 261 |
| abstract_inverted_index.tracts) | 136 |
| abstract_inverted_index.tracts. | 211 |
| abstract_inverted_index.whether | 47, 66 |
| abstract_inverted_index.λ2/λ3 | 149, 223 |
| abstract_inverted_index.(control | 135 |
| abstract_inverted_index.Efficacy | 306 |
| abstract_inverted_index.Evidence | 303 |
| abstract_inverted_index.However, | 40 |
| abstract_inverted_index.analysis | 175 |
| abstract_inverted_index.changes, | 56 |
| abstract_inverted_index.distinct | 125 |
| abstract_inverted_index.findings | 278 |
| abstract_inverted_index.function | 152, 245 |
| abstract_inverted_index.observed | 49, 226 |
| abstract_inverted_index.obtained | 181 |
| abstract_inverted_index.reflects | 54 |
| abstract_inverted_index.λ2/λ3) | 118 |
| abstract_inverted_index.−0.29, | 236 |
| abstract_inverted_index.−0.39, | 233 |
| abstract_inverted_index.Diffusion | 1 |
| abstract_inverted_index.Technical | 305 |
| abstract_inverted_index.advancing | 228 |
| abstract_inverted_index.analyzed. | 141 |
| abstract_inverted_index.asymmetry | 266 |
| abstract_inverted_index.cognitive | 88 |
| abstract_inverted_index.conducted | 177 |
| abstract_inverted_index.decreased | 243 |
| abstract_inverted_index.determine | 65 |
| abstract_inverted_index.diffusion | 18, 115 |
| abstract_inverted_index.diseases. | 62 |
| abstract_inverted_index.highlight | 279 |
| abstract_inverted_index.influence | 70 |
| abstract_inverted_index.potential | 5 |
| abstract_inverted_index.reduction | 50, 220 |
| abstract_inverted_index.residuals | 180 |
| abstract_inverted_index.sequence, | 102 |
| abstract_inverted_index.variable. | 172 |
| abstract_inverted_index.Assessment | 106 |
| abstract_inverted_index.Background | 0 |
| abstract_inverted_index.Population | 78 |
| abstract_inverted_index.accounting | 155 |
| abstract_inverted_index.anatomical | 138 |
| abstract_inverted_index.assessment | 9 |
| abstract_inverted_index.consistent | 204 |
| abstract_inverted_index.evaluating | 34 |
| abstract_inverted_index.glymphatic | 12 |
| abstract_inverted_index.introduced | 27 |
| abstract_inverted_index.occurrence | 59 |
| abstract_inverted_index.regression | 162 |
| abstract_inverted_index.technique, | 17 |
| abstract_inverted_index.widespread | 264 |
| abstract_inverted_index.Conclusions | 259 |
| abstract_inverted_index.Statistical | 142, 186 |
| abstract_inverted_index.alterations | 68 |
| abstract_inverted_index.association | 237, 253 |
| abstract_inverted_index.assumptions | 139 |
| abstract_inverted_index.cognitively | 82 |
| abstract_inverted_index.correlation | 147, 174 |
| abstract_inverted_index.diffusivity | 35, 290 |
| abstract_inverted_index.established | 46 |
| abstract_inverted_index.implemented | 164 |
| abstract_inverted_index.incorporate | 298 |
| abstract_inverted_index.investigate | 145 |
| abstract_inverted_index.regression. | 185 |
| abstract_inverted_index.spin‐echo | 99 |
| abstract_inverted_index.(MP‐RAGE). | 105 |
| abstract_inverted_index.ALPS‐index | 53, 137, 282 |
| abstract_inverted_index.demonstrated | 202 |
| abstract_inverted_index.impairments) | 89 |
| abstract_inverted_index.participants | 80 |
| abstract_inverted_index.perivascular | 23, 38, 293 |
| abstract_inverted_index.significance | 187 |
| abstract_inverted_index.(DTI‐ALPS), | 25 |
| abstract_inverted_index.ALPS‐index, | 29 |
| abstract_inverted_index.ALPS‐index. | 74 |
| abstract_inverted_index.Additionally, | 212 |
| abstract_inverted_index.T1‐weighted | 103 |
| abstract_inverted_index.age/cognitive | 151 |
| abstract_inverted_index.diffusivities | 112 |
| abstract_inverted_index.echo‐planar | 100 |
| abstract_inverted_index.respectively) | 241 |
| abstract_inverted_index.single‐shot | 98 |
| abstract_inverted_index.Retrospective. | 77 |
| abstract_inverted_index.contributions. | 300 |
| abstract_inverted_index.non‐invasive | 8 |
| abstract_inverted_index.respectively). | 257 |
| abstract_inverted_index.(ALPS‐tracts) | 130 |
| abstract_inverted_index.neurodegeration. | 276 |
| abstract_inverted_index.Strength/Sequence | 95 |
| abstract_inverted_index.neurodegenerative | 61 |
| abstract_inverted_index.venous/perivenous | 126 |
| abstract_inverted_index.diffusion‐weighted | 97 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| corresponding_author_ids | https://openalex.org/A5000988295 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I4394709130, https://openalex.org/I55769427 |
| citation_normalized_percentile.value | 0.9850803 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |