Exploring social media sentiment patterns for improved cyberbullying detection Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.11591/ijai.v14.i5.pp4211-4225
Cases of online bullying and aggressive behaviors directed at social media users have surged in recent years. These behaviors have had negative impacts on victims from a wide range of demographic groups. While efforts have been made to address persistent digital harassment, the expected outcome has been limited due to the lack of effective tools to quickly identify cyberbullying behaviors and censor them accordingly on social media platforms. This study presents a scalable and systematic method to detect and analyze offensive behavior and bullying on Twitter (now known as X). Our methodology involves extracting textual, user-related, and network-related attributes to understand the traits of individuals involved in such behaviors. This approach aims to recognize distinctive characteristics that set them apart from regular users. This study proposes a novel model by employing an integrated deep-learning model, combining the bidirectional gated recurrent unit (BiGRU), transformer block, and convolutional neural network (CNN). This model aims to classify X comments into offensive and non-offensive categories. The proposed model’s efficiacy has been evaluated through several experiments by combining three widely recognized datasets of hate speech. The proposed model achieves an accuracy rate of approximately 98.95%, showing promising results in identifying and categorizing offensive behavior in cyberbullying.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.11591/ijai.v14.i5.pp4211-4225
- https://ijai.iaescore.com/index.php/IJAI/article/download/26439/14809
- OA Status
- diamond
- OpenAlex ID
- https://openalex.org/W4415153065
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415153065Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.11591/ijai.v14.i5.pp4211-4225Digital Object Identifier
- Title
-
Exploring social media sentiment patterns for improved cyberbullying detectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-01Full publication date if available
- Authors
-
Wael M. S. Yafooz, Abdulsamad Ebrahim Yahya, Abdullah Alsaeedi, Reyadh Alluhaibi, Faisal Jamil, Mahmoud Salaheldin ElsayedList of authors in order
- Landing page
-
https://doi.org/10.11591/ijai.v14.i5.pp4211-4225Publisher landing page
- PDF URL
-
https://ijai.iaescore.com/index.php/IJAI/article/download/26439/14809Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ijai.iaescore.com/index.php/IJAI/article/download/26439/14809Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415153065 |
|---|---|
| doi | https://doi.org/10.11591/ijai.v14.i5.pp4211-4225 |
| ids.doi | https://doi.org/10.11591/ijai.v14.i5.pp4211-4225 |
| ids.openalex | https://openalex.org/W4415153065 |
| fwci | 0.0 |
| type | article |
| title | Exploring social media sentiment patterns for improved cyberbullying detection |
| biblio.issue | 5 |
| biblio.volume | 14 |
| biblio.last_page | 4211 |
| biblio.first_page | 4211 |
| topics[0].id | https://openalex.org/T12262 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8445000052452087 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Hate Speech and Cyberbullying Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.11591/ijai.v14.i5.pp4211-4225 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764408626 |
| locations[0].source.issn | 2089-4872, 2252-8938 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2089-4872 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IAES International Journal of Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| locations[0].license | cc-by-sa |
| locations[0].pdf_url | https://ijai.iaescore.com/index.php/IJAI/article/download/26439/14809 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IAES International Journal of Artificial Intelligence (IJ-AI) |
| locations[0].landing_page_url | https://doi.org/10.11591/ijai.v14.i5.pp4211-4225 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5010105706 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2842-9736 |
| authorships[0].author.display_name | Wael M. S. Yafooz |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wael M. S. Yafooz |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5049979707 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1811-0609 |
| authorships[1].author.display_name | Abdulsamad Ebrahim Yahya |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Abdulsamad Ebrahim Yahya |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5074717609 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7974-7638 |
| authorships[2].author.display_name | Abdullah Alsaeedi |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Abdullah Alsaeedi |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5040453270 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5794-1002 |
| authorships[3].author.display_name | Reyadh Alluhaibi |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Reyadh Alluhaibi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5023052774 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1994-6907 |
| authorships[4].author.display_name | Faisal Jamil |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Faisal Jamil |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5083656420 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5316-3418 |
| authorships[5].author.display_name | Mahmoud Salaheldin Elsayed |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Mahmoud Salaheldin Elsayed |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ijai.iaescore.com/index.php/IJAI/article/download/26439/14809 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-14T00:00:00 |
| display_name | Exploring social media sentiment patterns for improved cyberbullying detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12262 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8445000052452087 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Hate Speech and Cyberbullying Detection |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.11591/ijai.v14.i5.pp4211-4225 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764408626 |
| best_oa_location.source.issn | 2089-4872, 2252-8938 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2089-4872 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IAES International Journal of Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.license | cc-by-sa |
| best_oa_location.pdf_url | https://ijai.iaescore.com/index.php/IJAI/article/download/26439/14809 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-sa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IAES International Journal of Artificial Intelligence (IJ-AI) |
| best_oa_location.landing_page_url | https://doi.org/10.11591/ijai.v14.i5.pp4211-4225 |
| primary_location.id | doi:10.11591/ijai.v14.i5.pp4211-4225 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764408626 |
| primary_location.source.issn | 2089-4872, 2252-8938 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2089-4872 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IAES International Journal of Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| primary_location.license | cc-by-sa |
| primary_location.pdf_url | https://ijai.iaescore.com/index.php/IJAI/article/download/26439/14809 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-sa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IAES International Journal of Artificial Intelligence (IJ-AI) |
| primary_location.landing_page_url | https://doi.org/10.11591/ijai.v14.i5.pp4211-4225 |
| publication_date | 2025-10-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.X | 155 |
| abstract_inverted_index.a | 27, 72, 127 |
| abstract_inverted_index.an | 132, 185 |
| abstract_inverted_index.as | 89 |
| abstract_inverted_index.at | 9 |
| abstract_inverted_index.by | 130, 172 |
| abstract_inverted_index.in | 15, 107, 194, 200 |
| abstract_inverted_index.of | 2, 30, 53, 104, 178, 188 |
| abstract_inverted_index.on | 24, 65, 85 |
| abstract_inverted_index.to | 38, 50, 56, 77, 100, 113, 153 |
| abstract_inverted_index.Our | 91 |
| abstract_inverted_index.The | 162, 181 |
| abstract_inverted_index.X). | 90 |
| abstract_inverted_index.and | 5, 61, 74, 79, 83, 97, 145, 159, 196 |
| abstract_inverted_index.due | 49 |
| abstract_inverted_index.had | 21 |
| abstract_inverted_index.has | 46, 166 |
| abstract_inverted_index.set | 118 |
| abstract_inverted_index.the | 43, 51, 102, 137 |
| abstract_inverted_index.(now | 87 |
| abstract_inverted_index.This | 69, 110, 124, 150 |
| abstract_inverted_index.aims | 112, 152 |
| abstract_inverted_index.been | 36, 47, 167 |
| abstract_inverted_index.from | 26, 121 |
| abstract_inverted_index.hate | 179 |
| abstract_inverted_index.have | 13, 20, 35 |
| abstract_inverted_index.into | 157 |
| abstract_inverted_index.lack | 52 |
| abstract_inverted_index.made | 37 |
| abstract_inverted_index.rate | 187 |
| abstract_inverted_index.such | 108 |
| abstract_inverted_index.that | 117 |
| abstract_inverted_index.them | 63, 119 |
| abstract_inverted_index.unit | 141 |
| abstract_inverted_index.wide | 28 |
| abstract_inverted_index.These | 18 |
| abstract_inverted_index.While | 33 |
| abstract_inverted_index.apart | 120 |
| abstract_inverted_index.gated | 139 |
| abstract_inverted_index.known | 88 |
| abstract_inverted_index.media | 11, 67 |
| abstract_inverted_index.model | 129, 151, 183 |
| abstract_inverted_index.novel | 128 |
| abstract_inverted_index.range | 29 |
| abstract_inverted_index.study | 70, 125 |
| abstract_inverted_index.three | 174 |
| abstract_inverted_index.tools | 55 |
| abstract_inverted_index.users | 12 |
| abstract_inverted_index.(CNN). | 149 |
| abstract_inverted_index.block, | 144 |
| abstract_inverted_index.censor | 62 |
| abstract_inverted_index.detect | 78 |
| abstract_inverted_index.method | 76 |
| abstract_inverted_index.model, | 135 |
| abstract_inverted_index.neural | 147 |
| abstract_inverted_index.online | 3 |
| abstract_inverted_index.recent | 16 |
| abstract_inverted_index.social | 10, 66 |
| abstract_inverted_index.surged | 14 |
| abstract_inverted_index.traits | 103 |
| abstract_inverted_index.users. | 123 |
| abstract_inverted_index.widely | 175 |
| abstract_inverted_index.years. | 17 |
| abstract_inverted_index.98.95%, | 190 |
| abstract_inverted_index.Twitter | 86 |
| abstract_inverted_index.address | 39 |
| abstract_inverted_index.analyze | 80 |
| abstract_inverted_index.digital | 41 |
| abstract_inverted_index.efforts | 34 |
| abstract_inverted_index.groups. | 32 |
| abstract_inverted_index.impacts | 23 |
| abstract_inverted_index.limited | 48 |
| abstract_inverted_index.network | 148 |
| abstract_inverted_index.outcome | 45 |
| abstract_inverted_index.quickly | 57 |
| abstract_inverted_index.regular | 122 |
| abstract_inverted_index.results | 193 |
| abstract_inverted_index.several | 170 |
| abstract_inverted_index.showing | 191 |
| abstract_inverted_index.speech. | 180 |
| abstract_inverted_index.through | 169 |
| abstract_inverted_index.victims | 25 |
| abstract_inverted_index.<span | 0 |
| abstract_inverted_index.(BiGRU), | 142 |
| abstract_inverted_index.accuracy | 186 |
| abstract_inverted_index.achieves | 184 |
| abstract_inverted_index.approach | 111 |
| abstract_inverted_index.behavior | 82, 199 |
| abstract_inverted_index.bullying | 4, 84 |
| abstract_inverted_index.classify | 154 |
| abstract_inverted_index.comments | 156 |
| abstract_inverted_index.datasets | 177 |
| abstract_inverted_index.directed | 8 |
| abstract_inverted_index.expected | 44 |
| abstract_inverted_index.identify | 58 |
| abstract_inverted_index.involved | 106 |
| abstract_inverted_index.involves | 93 |
| abstract_inverted_index.negative | 22 |
| abstract_inverted_index.presents | 71 |
| abstract_inverted_index.proposed | 163, 182 |
| abstract_inverted_index.proposes | 126 |
| abstract_inverted_index.scalable | 73 |
| abstract_inverted_index.textual, | 95 |
| abstract_inverted_index.behaviors | 7, 19, 60 |
| abstract_inverted_index.combining | 136, 173 |
| abstract_inverted_index.effective | 54 |
| abstract_inverted_index.efficiacy | 165 |
| abstract_inverted_index.employing | 131 |
| abstract_inverted_index.evaluated | 168 |
| abstract_inverted_index.model’s | 164 |
| abstract_inverted_index.offensive | 81, 158, 198 |
| abstract_inverted_index.promising | 192 |
| abstract_inverted_index.recognize | 114 |
| abstract_inverted_index.recurrent | 140 |
| abstract_inverted_index.aggressive | 6 |
| abstract_inverted_index.attributes | 99 |
| abstract_inverted_index.behaviors. | 109 |
| abstract_inverted_index.extracting | 94 |
| abstract_inverted_index.integrated | 133 |
| abstract_inverted_index.persistent | 40 |
| abstract_inverted_index.platforms. | 68 |
| abstract_inverted_index.recognized | 176 |
| abstract_inverted_index.systematic | 75 |
| abstract_inverted_index.understand | 101 |
| abstract_inverted_index.accordingly | 64 |
| abstract_inverted_index.categories. | 161 |
| abstract_inverted_index.demographic | 31 |
| abstract_inverted_index.distinctive | 115 |
| abstract_inverted_index.experiments | 171 |
| abstract_inverted_index.harassment, | 42 |
| abstract_inverted_index.identifying | 195 |
| abstract_inverted_index.individuals | 105 |
| abstract_inverted_index.methodology | 92 |
| abstract_inverted_index.transformer | 143 |
| abstract_inverted_index.categorizing | 197 |
| abstract_inverted_index.approximately | 189 |
| abstract_inverted_index.bidirectional | 138 |
| abstract_inverted_index.convolutional | 146 |
| abstract_inverted_index.cyberbullying | 59 |
| abstract_inverted_index.deep-learning | 134 |
| abstract_inverted_index.non-offensive | 160 |
| abstract_inverted_index.user-related, | 96 |
| abstract_inverted_index.characteristics | 116 |
| abstract_inverted_index.network-related | 98 |
| abstract_inverted_index.lang="EN-US">Cases | 1 |
| abstract_inverted_index.cyberbullying.</span> | 201 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.22046375 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |