Exploring Speech Pattern Disorders in Autism using Machine Learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2405.05126
Diagnosing autism spectrum disorder (ASD) by identifying abnormal speech patterns from examiner-patient dialogues presents significant challenges due to the subtle and diverse manifestations of speech-related symptoms in affected individuals. This study presents a comprehensive approach to identify distinctive speech patterns through the analysis of examiner-patient dialogues. Utilizing a dataset of recorded dialogues, we extracted 40 speech-related features, categorized into frequency, zero-crossing rate, energy, spectral characteristics, Mel Frequency Cepstral Coefficients (MFCCs), and balance. These features encompass various aspects of speech such as intonation, volume, rhythm, and speech rate, reflecting the complex nature of communicative behaviors in ASD. We employed machine learning for both classification and regression tasks to analyze these speech features. The classification model aimed to differentiate between ASD and non-ASD cases, achieving an accuracy of 87.75%. Regression models were developed to predict speech pattern related variables and a composite score from all variables, facilitating a deeper understanding of the speech dynamics associated with ASD. The effectiveness of machine learning in interpreting intricate speech patterns and the high classification accuracy underscore the potential of computational methods in supporting the diagnostic processes for ASD. This approach not only aids in early detection but also contributes to personalized treatment planning by providing insights into the speech and communication profiles of individuals with ASD.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2405.05126
- https://arxiv.org/pdf/2405.05126
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4396817090
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4396817090Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2405.05126Digital Object Identifier
- Title
-
Exploring Speech Pattern Disorders in Autism using Machine LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-03Full publication date if available
- Authors
-
Chuanbo Hu, Jacob Thrasher, Wenqi Li, Mindi Ruan, Xiangxu Yu, Lynn K. Paul, Shuo Wang, Xin LiList of authors in order
- Landing page
-
https://arxiv.org/abs/2405.05126Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2405.05126Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2405.05126Direct OA link when available
- Concepts
-
Autism, Psychology, Computer science, Speech recognition, Cognitive psychology, Developmental psychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4396817090 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2405.05126 |
| ids.doi | https://doi.org/10.48550/arxiv.2405.05126 |
| ids.openalex | https://openalex.org/W4396817090 |
| fwci | |
| type | preprint |
| title | Exploring Speech Pattern Disorders in Autism using Machine Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C205778803 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7888473272323608 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q38404 |
| concepts[0].display_name | Autism |
| concepts[1].id | https://openalex.org/C15744967 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5565212368965149 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[1].display_name | Psychology |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4213476777076721 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C28490314 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4074510633945465 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[3].display_name | Speech recognition |
| concepts[4].id | https://openalex.org/C180747234 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3488539457321167 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[4].display_name | Cognitive psychology |
| concepts[5].id | https://openalex.org/C138496976 |
| concepts[5].level | 1 |
| concepts[5].score | 0.21345466375350952 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q175002 |
| concepts[5].display_name | Developmental psychology |
| keywords[0].id | https://openalex.org/keywords/autism |
| keywords[0].score | 0.7888473272323608 |
| keywords[0].display_name | Autism |
| keywords[1].id | https://openalex.org/keywords/psychology |
| keywords[1].score | 0.5565212368965149 |
| keywords[1].display_name | Psychology |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4213476777076721 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/speech-recognition |
| keywords[3].score | 0.4074510633945465 |
| keywords[3].display_name | Speech recognition |
| keywords[4].id | https://openalex.org/keywords/cognitive-psychology |
| keywords[4].score | 0.3488539457321167 |
| keywords[4].display_name | Cognitive psychology |
| keywords[5].id | https://openalex.org/keywords/developmental-psychology |
| keywords[5].score | 0.21345466375350952 |
| keywords[5].display_name | Developmental psychology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2405.05126 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2405.05126 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2405.05126 |
| locations[1].id | doi:10.48550/arxiv.2405.05126 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2405.05126 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5004539582 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1165-5005 |
| authorships[0].author.display_name | Chuanbo Hu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hu, Chuanbo |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5097357895 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jacob Thrasher |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Thrasher, Jacob |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100461993 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3726-343X |
| authorships[2].author.display_name | Wenqi Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Li, Wenqi |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5065533387 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7931-500X |
| authorships[3].author.display_name | Mindi Ruan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ruan, Mindi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5102956945 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2710-2969 |
| authorships[4].author.display_name | Xiangxu Yu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yu, Xiangxu |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5000563326 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3128-8313 |
| authorships[5].author.display_name | Lynn K. Paul |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Paul, Lynn K |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100639215 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1390-9219 |
| authorships[6].author.display_name | Shuo Wang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Wang, Shuo |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5100660755 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-0119-0072 |
| authorships[7].author.display_name | Xin Li |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Li, Xin |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2405.05126 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Exploring Speech Pattern Disorders in Autism using Machine Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic | |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W4280602684, https://openalex.org/W4310092953, https://openalex.org/W2227393071, https://openalex.org/W1995350144, https://openalex.org/W2082102603, https://openalex.org/W2166141227, https://openalex.org/W3133980636, https://openalex.org/W4378085486 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2405.05126 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2405.05126 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2405.05126 |
| primary_location.id | pmh:oai:arXiv.org:2405.05126 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2405.05126 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2405.05126 |
| publication_date | 2024-05-03 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 32, 47, 138, 145 |
| abstract_inverted_index.40 | 54 |
| abstract_inverted_index.We | 96 |
| abstract_inverted_index.an | 123 |
| abstract_inverted_index.as | 80 |
| abstract_inverted_index.by | 5, 198 |
| abstract_inverted_index.in | 26, 94, 160, 176, 188 |
| abstract_inverted_index.of | 23, 43, 49, 77, 91, 125, 148, 157, 173, 207 |
| abstract_inverted_index.to | 17, 35, 106, 115, 131, 194 |
| abstract_inverted_index.we | 52 |
| abstract_inverted_index.ASD | 118 |
| abstract_inverted_index.Mel | 65 |
| abstract_inverted_index.The | 111, 155 |
| abstract_inverted_index.all | 142 |
| abstract_inverted_index.and | 20, 70, 84, 103, 119, 137, 165, 204 |
| abstract_inverted_index.but | 191 |
| abstract_inverted_index.due | 16 |
| abstract_inverted_index.for | 100, 181 |
| abstract_inverted_index.not | 185 |
| abstract_inverted_index.the | 18, 41, 88, 149, 166, 171, 178, 202 |
| abstract_inverted_index.ASD. | 95, 154, 182, 210 |
| abstract_inverted_index.This | 29, 183 |
| abstract_inverted_index.aids | 187 |
| abstract_inverted_index.also | 192 |
| abstract_inverted_index.both | 101 |
| abstract_inverted_index.from | 10, 141 |
| abstract_inverted_index.high | 167 |
| abstract_inverted_index.into | 58, 201 |
| abstract_inverted_index.only | 186 |
| abstract_inverted_index.such | 79 |
| abstract_inverted_index.were | 129 |
| abstract_inverted_index.with | 153, 209 |
| abstract_inverted_index.(ASD) | 4 |
| abstract_inverted_index.These | 72 |
| abstract_inverted_index.aimed | 114 |
| abstract_inverted_index.early | 189 |
| abstract_inverted_index.model | 113 |
| abstract_inverted_index.rate, | 61, 86 |
| abstract_inverted_index.score | 140 |
| abstract_inverted_index.study | 30 |
| abstract_inverted_index.tasks | 105 |
| abstract_inverted_index.these | 108 |
| abstract_inverted_index.autism | 1 |
| abstract_inverted_index.cases, | 121 |
| abstract_inverted_index.deeper | 146 |
| abstract_inverted_index.models | 128 |
| abstract_inverted_index.nature | 90 |
| abstract_inverted_index.speech | 8, 38, 78, 85, 109, 133, 150, 163, 203 |
| abstract_inverted_index.subtle | 19 |
| abstract_inverted_index.87.75%. | 126 |
| abstract_inverted_index.analyze | 107 |
| abstract_inverted_index.aspects | 76 |
| abstract_inverted_index.between | 117 |
| abstract_inverted_index.complex | 89 |
| abstract_inverted_index.dataset | 48 |
| abstract_inverted_index.diverse | 21 |
| abstract_inverted_index.energy, | 62 |
| abstract_inverted_index.machine | 98, 158 |
| abstract_inverted_index.methods | 175 |
| abstract_inverted_index.non-ASD | 120 |
| abstract_inverted_index.pattern | 134 |
| abstract_inverted_index.predict | 132 |
| abstract_inverted_index.related | 135 |
| abstract_inverted_index.rhythm, | 83 |
| abstract_inverted_index.through | 40 |
| abstract_inverted_index.various | 75 |
| abstract_inverted_index.volume, | 82 |
| abstract_inverted_index.(MFCCs), | 69 |
| abstract_inverted_index.Cepstral | 67 |
| abstract_inverted_index.abnormal | 7 |
| abstract_inverted_index.accuracy | 124, 169 |
| abstract_inverted_index.affected | 27 |
| abstract_inverted_index.analysis | 42 |
| abstract_inverted_index.approach | 34, 184 |
| abstract_inverted_index.balance. | 71 |
| abstract_inverted_index.disorder | 3 |
| abstract_inverted_index.dynamics | 151 |
| abstract_inverted_index.employed | 97 |
| abstract_inverted_index.features | 73 |
| abstract_inverted_index.identify | 36 |
| abstract_inverted_index.insights | 200 |
| abstract_inverted_index.learning | 99, 159 |
| abstract_inverted_index.patterns | 9, 39, 164 |
| abstract_inverted_index.planning | 197 |
| abstract_inverted_index.presents | 13, 31 |
| abstract_inverted_index.profiles | 206 |
| abstract_inverted_index.recorded | 50 |
| abstract_inverted_index.spectral | 63 |
| abstract_inverted_index.spectrum | 2 |
| abstract_inverted_index.symptoms | 25 |
| abstract_inverted_index.Frequency | 66 |
| abstract_inverted_index.Utilizing | 46 |
| abstract_inverted_index.achieving | 122 |
| abstract_inverted_index.behaviors | 93 |
| abstract_inverted_index.composite | 139 |
| abstract_inverted_index.detection | 190 |
| abstract_inverted_index.developed | 130 |
| abstract_inverted_index.dialogues | 12 |
| abstract_inverted_index.encompass | 74 |
| abstract_inverted_index.extracted | 53 |
| abstract_inverted_index.features, | 56 |
| abstract_inverted_index.features. | 110 |
| abstract_inverted_index.intricate | 162 |
| abstract_inverted_index.potential | 172 |
| abstract_inverted_index.processes | 180 |
| abstract_inverted_index.providing | 199 |
| abstract_inverted_index.treatment | 196 |
| abstract_inverted_index.variables | 136 |
| abstract_inverted_index.Diagnosing | 0 |
| abstract_inverted_index.Regression | 127 |
| abstract_inverted_index.associated | 152 |
| abstract_inverted_index.challenges | 15 |
| abstract_inverted_index.diagnostic | 179 |
| abstract_inverted_index.dialogues, | 51 |
| abstract_inverted_index.dialogues. | 45 |
| abstract_inverted_index.frequency, | 59 |
| abstract_inverted_index.reflecting | 87 |
| abstract_inverted_index.regression | 104 |
| abstract_inverted_index.supporting | 177 |
| abstract_inverted_index.underscore | 170 |
| abstract_inverted_index.variables, | 143 |
| abstract_inverted_index.categorized | 57 |
| abstract_inverted_index.contributes | 193 |
| abstract_inverted_index.distinctive | 37 |
| abstract_inverted_index.identifying | 6 |
| abstract_inverted_index.individuals | 208 |
| abstract_inverted_index.intonation, | 81 |
| abstract_inverted_index.significant | 14 |
| abstract_inverted_index.Coefficients | 68 |
| abstract_inverted_index.facilitating | 144 |
| abstract_inverted_index.individuals. | 28 |
| abstract_inverted_index.interpreting | 161 |
| abstract_inverted_index.personalized | 195 |
| abstract_inverted_index.communication | 205 |
| abstract_inverted_index.communicative | 92 |
| abstract_inverted_index.comprehensive | 33 |
| abstract_inverted_index.computational | 174 |
| abstract_inverted_index.differentiate | 116 |
| abstract_inverted_index.effectiveness | 156 |
| abstract_inverted_index.understanding | 147 |
| abstract_inverted_index.zero-crossing | 60 |
| abstract_inverted_index.classification | 102, 112, 168 |
| abstract_inverted_index.manifestations | 22 |
| abstract_inverted_index.speech-related | 24, 55 |
| abstract_inverted_index.characteristics, | 64 |
| abstract_inverted_index.examiner-patient | 11, 44 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |