Exploring the Impact of Synthetic Data for Aerial-view Human Detection Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2405.15203
Aerial-view human detection has a large demand for large-scale data to capture more diverse human appearances compared to ground-view human detection. Therefore, synthetic data can be a good resource to expand data, but the domain gap with real-world data is the biggest obstacle to its use in training. As a common solution to deal with the domain gap, the sim2real transformation is used, and its quality is affected by three factors: i) the real data serving as a reference when calculating the domain gap, ii) the synthetic data chosen to avoid the transformation quality degradation, and iii) the synthetic data pool from which the synthetic data is selected. In this paper, we investigate the impact of these factors on maximizing the effectiveness of synthetic data in training in terms of improving learning performance and acquiring domain generalization ability--two main benefits expected of using synthetic data. As an evaluation metric for the second benefit, we introduce a method for measuring the distribution gap between two datasets, which is derived as the normalized sum of the Mahalanobis distances of all test data. As a result, we have discovered several important findings that have never been investigated or have been used previously without accurate understanding. We expect that these findings can break the current trend of either naively using or being hesitant to use synthetic data in machine learning due to the lack of understanding, leading to more appropriate use in future research.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2405.15203
- https://arxiv.org/pdf/2405.15203
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399114674
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399114674Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2405.15203Digital Object Identifier
- Title
-
Exploring the Impact of Synthetic Data for Aerial-view Human DetectionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-24Full publication date if available
- Authors
-
Hyungtae Lee, Zhang Yan, Yi‐Ting Shen, Heesung Kwon, Shuvra S. BhattacharyyaList of authors in order
- Landing page
-
https://arxiv.org/abs/2405.15203Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2405.15203Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2405.15203Direct OA link when available
- Concepts
-
Computer science, Data scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399114674 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2405.15203 |
| ids.doi | https://doi.org/10.48550/arxiv.2405.15203 |
| ids.openalex | https://openalex.org/W4399114674 |
| fwci | |
| type | preprint |
| title | Exploring the Impact of Synthetic Data for Aerial-view Human Detection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10331 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9973999857902527 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Video Surveillance and Tracking Methods |
| topics[1].id | https://openalex.org/T12389 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9735000133514404 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Infrared Target Detection Methodologies |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9099000096321106 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.41246268153190613 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2522767166 |
| concepts[1].level | 1 |
| concepts[1].score | 0.3692384362220764 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[1].display_name | Data science |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.41246268153190613 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/data-science |
| keywords[1].score | 0.3692384362220764 |
| keywords[1].display_name | Data science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2405.15203 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2405.15203 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2405.15203 |
| locations[1].id | doi:10.48550/arxiv.2405.15203 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2405.15203 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5081206531 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0631-9894 |
| authorships[0].author.display_name | Hyungtae Lee |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lee, Hyungtae |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5082789021 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8460-2671 |
| authorships[1].author.display_name | Zhang Yan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Yan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5016275823 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1167-5535 |
| authorships[2].author.display_name | Yi‐Ting Shen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shen, Yi-Ting |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5040282679 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Heesung Kwon |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kwon, Heesung |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5038036261 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7719-1106 |
| authorships[4].author.display_name | Shuvra S. Bhattacharyya |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Bhattacharyya, Shuvra S. |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2405.15203 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Exploring the Impact of Synthetic Data for Aerial-view Human Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10331 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9973999857902527 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Video Surveillance and Tracking Methods |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052, https://openalex.org/W2382290278, https://openalex.org/W4395014643 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2405.15203 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2405.15203 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2405.15203 |
| primary_location.id | pmh:oai:arXiv.org:2405.15203 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2405.15203 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2405.15203 |
| publication_date | 2024-05-24 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 26, 49, 77, 155, 181 |
| abstract_inverted_index.As | 48, 145, 180 |
| abstract_inverted_index.In | 108 |
| abstract_inverted_index.We | 202 |
| abstract_inverted_index.an | 146 |
| abstract_inverted_index.as | 76, 168 |
| abstract_inverted_index.be | 25 |
| abstract_inverted_index.by | 68 |
| abstract_inverted_index.i) | 71 |
| abstract_inverted_index.in | 46, 125, 127, 223, 237 |
| abstract_inverted_index.is | 39, 61, 66, 106, 166 |
| abstract_inverted_index.of | 115, 122, 129, 141, 172, 176, 212, 230 |
| abstract_inverted_index.on | 118 |
| abstract_inverted_index.or | 194, 216 |
| abstract_inverted_index.to | 10, 17, 29, 43, 52, 89, 219, 227, 233 |
| abstract_inverted_index.we | 111, 153, 183 |
| abstract_inverted_index.all | 177 |
| abstract_inverted_index.and | 63, 95, 133 |
| abstract_inverted_index.but | 32 |
| abstract_inverted_index.can | 24, 207 |
| abstract_inverted_index.due | 226 |
| abstract_inverted_index.for | 7, 149, 157 |
| abstract_inverted_index.gap | 35, 161 |
| abstract_inverted_index.has | 3 |
| abstract_inverted_index.ii) | 84 |
| abstract_inverted_index.its | 44, 64 |
| abstract_inverted_index.sum | 171 |
| abstract_inverted_index.the | 33, 40, 55, 58, 72, 81, 85, 91, 97, 103, 113, 120, 150, 159, 169, 173, 209, 228 |
| abstract_inverted_index.two | 163 |
| abstract_inverted_index.use | 45, 220, 236 |
| abstract_inverted_index.been | 192, 196 |
| abstract_inverted_index.data | 9, 23, 38, 74, 87, 99, 105, 124, 222 |
| abstract_inverted_index.deal | 53 |
| abstract_inverted_index.from | 101 |
| abstract_inverted_index.gap, | 57, 83 |
| abstract_inverted_index.good | 27 |
| abstract_inverted_index.have | 184, 190, 195 |
| abstract_inverted_index.iii) | 96 |
| abstract_inverted_index.lack | 229 |
| abstract_inverted_index.main | 138 |
| abstract_inverted_index.more | 12, 234 |
| abstract_inverted_index.pool | 100 |
| abstract_inverted_index.real | 73 |
| abstract_inverted_index.test | 178 |
| abstract_inverted_index.that | 189, 204 |
| abstract_inverted_index.this | 109 |
| abstract_inverted_index.used | 197 |
| abstract_inverted_index.when | 79 |
| abstract_inverted_index.with | 36, 54 |
| abstract_inverted_index.avoid | 90 |
| abstract_inverted_index.being | 217 |
| abstract_inverted_index.break | 208 |
| abstract_inverted_index.data, | 31 |
| abstract_inverted_index.data. | 144, 179 |
| abstract_inverted_index.human | 1, 14, 19 |
| abstract_inverted_index.large | 5 |
| abstract_inverted_index.never | 191 |
| abstract_inverted_index.terms | 128 |
| abstract_inverted_index.these | 116, 205 |
| abstract_inverted_index.three | 69 |
| abstract_inverted_index.trend | 211 |
| abstract_inverted_index.used, | 62 |
| abstract_inverted_index.using | 142, 215 |
| abstract_inverted_index.which | 102, 165 |
| abstract_inverted_index.chosen | 88 |
| abstract_inverted_index.common | 50 |
| abstract_inverted_index.demand | 6 |
| abstract_inverted_index.domain | 34, 56, 82, 135 |
| abstract_inverted_index.either | 213 |
| abstract_inverted_index.expand | 30 |
| abstract_inverted_index.expect | 203 |
| abstract_inverted_index.future | 238 |
| abstract_inverted_index.impact | 114 |
| abstract_inverted_index.method | 156 |
| abstract_inverted_index.metric | 148 |
| abstract_inverted_index.paper, | 110 |
| abstract_inverted_index.second | 151 |
| abstract_inverted_index.between | 162 |
| abstract_inverted_index.biggest | 41 |
| abstract_inverted_index.capture | 11 |
| abstract_inverted_index.current | 210 |
| abstract_inverted_index.derived | 167 |
| abstract_inverted_index.diverse | 13 |
| abstract_inverted_index.factors | 117 |
| abstract_inverted_index.leading | 232 |
| abstract_inverted_index.machine | 224 |
| abstract_inverted_index.naively | 214 |
| abstract_inverted_index.quality | 65, 93 |
| abstract_inverted_index.result, | 182 |
| abstract_inverted_index.serving | 75 |
| abstract_inverted_index.several | 186 |
| abstract_inverted_index.without | 199 |
| abstract_inverted_index.accurate | 200 |
| abstract_inverted_index.affected | 67 |
| abstract_inverted_index.benefit, | 152 |
| abstract_inverted_index.benefits | 139 |
| abstract_inverted_index.compared | 16 |
| abstract_inverted_index.expected | 140 |
| abstract_inverted_index.factors: | 70 |
| abstract_inverted_index.findings | 188, 206 |
| abstract_inverted_index.hesitant | 218 |
| abstract_inverted_index.learning | 131, 225 |
| abstract_inverted_index.obstacle | 42 |
| abstract_inverted_index.resource | 28 |
| abstract_inverted_index.sim2real | 59 |
| abstract_inverted_index.solution | 51 |
| abstract_inverted_index.training | 126 |
| abstract_inverted_index.acquiring | 134 |
| abstract_inverted_index.datasets, | 164 |
| abstract_inverted_index.detection | 2 |
| abstract_inverted_index.distances | 175 |
| abstract_inverted_index.important | 187 |
| abstract_inverted_index.improving | 130 |
| abstract_inverted_index.introduce | 154 |
| abstract_inverted_index.measuring | 158 |
| abstract_inverted_index.reference | 78 |
| abstract_inverted_index.research. | 239 |
| abstract_inverted_index.selected. | 107 |
| abstract_inverted_index.synthetic | 22, 86, 98, 104, 123, 143, 221 |
| abstract_inverted_index.training. | 47 |
| abstract_inverted_index.Therefore, | 21 |
| abstract_inverted_index.detection. | 20 |
| abstract_inverted_index.discovered | 185 |
| abstract_inverted_index.evaluation | 147 |
| abstract_inverted_index.maximizing | 119 |
| abstract_inverted_index.normalized | 170 |
| abstract_inverted_index.previously | 198 |
| abstract_inverted_index.real-world | 37 |
| abstract_inverted_index.Aerial-view | 0 |
| abstract_inverted_index.Mahalanobis | 174 |
| abstract_inverted_index.appearances | 15 |
| abstract_inverted_index.appropriate | 235 |
| abstract_inverted_index.calculating | 80 |
| abstract_inverted_index.ground-view | 18 |
| abstract_inverted_index.investigate | 112 |
| abstract_inverted_index.large-scale | 8 |
| abstract_inverted_index.performance | 132 |
| abstract_inverted_index.ability--two | 137 |
| abstract_inverted_index.degradation, | 94 |
| abstract_inverted_index.distribution | 160 |
| abstract_inverted_index.investigated | 193 |
| abstract_inverted_index.effectiveness | 121 |
| abstract_inverted_index.generalization | 136 |
| abstract_inverted_index.transformation | 60, 92 |
| abstract_inverted_index.understanding, | 231 |
| abstract_inverted_index.understanding. | 201 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |