Exploring the Magnitude-Shape Plot Framework for Anomaly Detection in Crowded Video Scenes Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.32388/0n1ebc
Detecting anomalies in crowded video scenes is critical for public safety, enabling timely identification of potential threats. This study explores video anomaly detection within a Functional Data Analysis framework, focusing on the application of the Magnitude-Shape (MS) Plot. Autoencoders are used to learn and reconstruct normal behavioral patterns from anomaly-free training data, resulting in low reconstruction errors for normal frames and higher errors for frames with potential anomalies. The reconstruction error matrix for each frame is treated as multivariate functional data, with the MS-Plot applied to analyze both magnitude and shape deviations, enhancing the accuracy of anomaly detection. Using its capacity to evaluate the magnitude and shape of deviations, the MS-Plot offers a statistically principled and interpretable framework for anomaly detection. The proposed methodology is evaluated on two widely used benchmark datasets, UCSD Ped2 and CUHK Avenue, demonstrating promising performance. It performs better than traditional univariate functional detectors (e.g., FBPlot, TVDMSS, Extremal Depth, and Outliergram) and several state-of-the-art methods. These results highlight the potential of the MS-Plot-based framework for effective anomaly detection in crowded video scenes.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.32388/0n1ebc
- OA Status
- gold
- Cited By
- 2
- References
- 89
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407029570
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407029570Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.32388/0n1ebcDigital Object Identifier
- Title
-
Exploring the Magnitude-Shape Plot Framework for Anomaly Detection in Crowded Video ScenesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-31Full publication date if available
- Authors
-
Z. Jane Wang, Fouzi Harrou, Ying Sun, Marc G. GentonList of authors in order
- Landing page
-
https://doi.org/10.32388/0n1ebcPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.32388/0n1ebcDirect OA link when available
- Concepts
-
Anomaly detection, Benchmark (surveying), Plot (graphics), Computer science, Artificial intelligence, Magnitude (astronomy), Anomaly (physics), Pattern recognition (psychology), Frame (networking), Univariate, Computer vision, Multivariate statistics, Mathematics, Machine learning, Statistics, Geography, Cartography, Physics, Telecommunications, Condensed matter physics, AstronomyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
89Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407029570 |
|---|---|
| doi | https://doi.org/10.32388/0n1ebc |
| ids.doi | https://doi.org/10.32388/0n1ebc |
| ids.openalex | https://openalex.org/W4407029570 |
| fwci | 9.63949029 |
| type | preprint |
| title | Exploring the Magnitude-Shape Plot Framework for Anomaly Detection in Crowded Video Scenes |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T10400 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9957000017166138 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Network Security and Intrusion Detection |
| topics[2].id | https://openalex.org/T12391 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9868999719619751 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Artificial Immune Systems Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C739882 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8419864177703857 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[0].display_name | Anomaly detection |
| concepts[1].id | https://openalex.org/C185798385 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7079150676727295 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[1].display_name | Benchmark (surveying) |
| concepts[2].id | https://openalex.org/C167651023 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6827220916748047 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1474611 |
| concepts[2].display_name | Plot (graphics) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6607778072357178 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6552696824073792 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C126691448 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6452367305755615 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2028919 |
| concepts[5].display_name | Magnitude (astronomy) |
| concepts[6].id | https://openalex.org/C12997251 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5695589780807495 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q567560 |
| concepts[6].display_name | Anomaly (physics) |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5067232251167297 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C126042441 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4837517738342285 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1324888 |
| concepts[8].display_name | Frame (networking) |
| concepts[9].id | https://openalex.org/C199163554 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4819219410419464 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1681619 |
| concepts[9].display_name | Univariate |
| concepts[10].id | https://openalex.org/C31972630 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3927232027053833 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[10].display_name | Computer vision |
| concepts[11].id | https://openalex.org/C161584116 |
| concepts[11].level | 2 |
| concepts[11].score | 0.36036616563796997 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[11].display_name | Multivariate statistics |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.20854783058166504 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.1966002881526947 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.16511639952659607 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| concepts[15].id | https://openalex.org/C205649164 |
| concepts[15].level | 0 |
| concepts[15].score | 0.12027785181999207 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[15].display_name | Geography |
| concepts[16].id | https://openalex.org/C58640448 |
| concepts[16].level | 1 |
| concepts[16].score | 0.08198288083076477 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[16].display_name | Cartography |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0801478922367096 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| concepts[18].id | https://openalex.org/C76155785 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[18].display_name | Telecommunications |
| concepts[19].id | https://openalex.org/C26873012 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q214781 |
| concepts[19].display_name | Condensed matter physics |
| concepts[20].id | https://openalex.org/C1276947 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[20].display_name | Astronomy |
| keywords[0].id | https://openalex.org/keywords/anomaly-detection |
| keywords[0].score | 0.8419864177703857 |
| keywords[0].display_name | Anomaly detection |
| keywords[1].id | https://openalex.org/keywords/benchmark |
| keywords[1].score | 0.7079150676727295 |
| keywords[1].display_name | Benchmark (surveying) |
| keywords[2].id | https://openalex.org/keywords/plot |
| keywords[2].score | 0.6827220916748047 |
| keywords[2].display_name | Plot (graphics) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6607778072357178 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.6552696824073792 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/magnitude |
| keywords[5].score | 0.6452367305755615 |
| keywords[5].display_name | Magnitude (astronomy) |
| keywords[6].id | https://openalex.org/keywords/anomaly |
| keywords[6].score | 0.5695589780807495 |
| keywords[6].display_name | Anomaly (physics) |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.5067232251167297 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/frame |
| keywords[8].score | 0.4837517738342285 |
| keywords[8].display_name | Frame (networking) |
| keywords[9].id | https://openalex.org/keywords/univariate |
| keywords[9].score | 0.4819219410419464 |
| keywords[9].display_name | Univariate |
| keywords[10].id | https://openalex.org/keywords/computer-vision |
| keywords[10].score | 0.3927232027053833 |
| keywords[10].display_name | Computer vision |
| keywords[11].id | https://openalex.org/keywords/multivariate-statistics |
| keywords[11].score | 0.36036616563796997 |
| keywords[11].display_name | Multivariate statistics |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.20854783058166504 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.1966002881526947 |
| keywords[13].display_name | Machine learning |
| keywords[14].id | https://openalex.org/keywords/statistics |
| keywords[14].score | 0.16511639952659607 |
| keywords[14].display_name | Statistics |
| keywords[15].id | https://openalex.org/keywords/geography |
| keywords[15].score | 0.12027785181999207 |
| keywords[15].display_name | Geography |
| keywords[16].id | https://openalex.org/keywords/cartography |
| keywords[16].score | 0.08198288083076477 |
| keywords[16].display_name | Cartography |
| keywords[17].id | https://openalex.org/keywords/physics |
| keywords[17].score | 0.0801478922367096 |
| keywords[17].display_name | Physics |
| language | en |
| locations[0].id | doi:10.32388/0n1ebc |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.32388/0n1ebc |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5051587486 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3791-0249 |
| authorships[0].author.display_name | Z. Jane Wang |
| authorships[0].countries | SA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I71920554 |
| authorships[0].affiliations[0].raw_affiliation_string | King Abdullah University of Science and Technology |
| authorships[0].institutions[0].id | https://openalex.org/I71920554 |
| authorships[0].institutions[0].ror | https://ror.org/01q3tbs38 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I71920554 |
| authorships[0].institutions[0].country_code | SA |
| authorships[0].institutions[0].display_name | King Abdullah University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zuzheng Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | King Abdullah University of Science and Technology |
| authorships[1].author.id | https://openalex.org/A5087572406 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2138-319X |
| authorships[1].author.display_name | Fouzi Harrou |
| authorships[1].countries | SA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I71920554 |
| authorships[1].affiliations[0].raw_affiliation_string | King Abdullah University of Science and Technology |
| authorships[1].institutions[0].id | https://openalex.org/I71920554 |
| authorships[1].institutions[0].ror | https://ror.org/01q3tbs38 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I71920554 |
| authorships[1].institutions[0].country_code | SA |
| authorships[1].institutions[0].display_name | King Abdullah University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Fouzi Harrou |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | King Abdullah University of Science and Technology |
| authorships[2].author.id | https://openalex.org/A5090118631 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6703-4270 |
| authorships[2].author.display_name | Ying Sun |
| authorships[2].countries | SA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I71920554 |
| authorships[2].affiliations[0].raw_affiliation_string | King Abdullah University of Science and Technology |
| authorships[2].institutions[0].id | https://openalex.org/I71920554 |
| authorships[2].institutions[0].ror | https://ror.org/01q3tbs38 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I71920554 |
| authorships[2].institutions[0].country_code | SA |
| authorships[2].institutions[0].display_name | King Abdullah University of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ying Sun |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | King Abdullah University of Science and Technology |
| authorships[3].author.id | https://openalex.org/A5027166101 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6467-2998 |
| authorships[3].author.display_name | Marc G. Genton |
| authorships[3].countries | SA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I71920554 |
| authorships[3].affiliations[0].raw_affiliation_string | King Abdullah University of Science and Technology |
| authorships[3].institutions[0].id | https://openalex.org/I71920554 |
| authorships[3].institutions[0].ror | https://ror.org/01q3tbs38 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I71920554 |
| authorships[3].institutions[0].country_code | SA |
| authorships[3].institutions[0].display_name | King Abdullah University of Science and Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Marc G Genton |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | King Abdullah University of Science and Technology |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.32388/0n1ebc |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Exploring the Magnitude-Shape Plot Framework for Anomaly Detection in Crowded Video Scenes |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-25T14:43:58.451035 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W2806741695, https://openalex.org/W4290647774, https://openalex.org/W3189286258, https://openalex.org/W3207797160, https://openalex.org/W3210364259, https://openalex.org/W4300558037, https://openalex.org/W2667207928, https://openalex.org/W2912112202, https://openalex.org/W4377864969, https://openalex.org/W3120251014 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.32388/0n1ebc |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.32388/0n1ebc |
| primary_location.id | doi:10.32388/0n1ebc |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.32388/0n1ebc |
| publication_date | 2025-01-31 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2913427224, https://openalex.org/W2591878254, https://openalex.org/W2122646361, https://openalex.org/W3107664750, https://openalex.org/W3201949111, https://openalex.org/W4378228743, https://openalex.org/W2058415349, https://openalex.org/W2801326158, https://openalex.org/W2133235827, https://openalex.org/W2138092272, https://openalex.org/W2164489414, https://openalex.org/W2142412278, https://openalex.org/W2110934250, https://openalex.org/W2464754550, https://openalex.org/W1973464566, https://openalex.org/W1967456674, https://openalex.org/W2163612318, https://openalex.org/W2161969291, https://openalex.org/W2125105611, https://openalex.org/W1595717062, https://openalex.org/W2762549740, https://openalex.org/W2601293206, https://openalex.org/W1957718552, https://openalex.org/W2963541464, https://openalex.org/W3171328460, https://openalex.org/W2963795951, https://openalex.org/W2970724283, https://openalex.org/W3153454949, https://openalex.org/W3214544398, https://openalex.org/W4402716115, https://openalex.org/W4310465416, https://openalex.org/W6873392637, https://openalex.org/W2460849547, https://openalex.org/W4392543722, https://openalex.org/W4398249850, https://openalex.org/W2579718262, https://openalex.org/W2987228832, https://openalex.org/W4281478450, https://openalex.org/W2766042539, https://openalex.org/W3044374951, https://openalex.org/W2976482555, https://openalex.org/W4366586896, https://openalex.org/W4377145718, https://openalex.org/W2970645682, https://openalex.org/W4226481934, https://openalex.org/W2996443765, https://openalex.org/W4390165684, https://openalex.org/W2602734281, https://openalex.org/W2517784537, https://openalex.org/W4210656292, https://openalex.org/W4309918484, https://openalex.org/W4403938790, https://openalex.org/W4386959662, https://openalex.org/W4392543527, https://openalex.org/W3170135154, https://openalex.org/W4402727956, https://openalex.org/W4386071499, https://openalex.org/W4250766106, https://openalex.org/W2261345762, https://openalex.org/W1991308917, https://openalex.org/W4243563432, https://openalex.org/W2000724964, https://openalex.org/W2163922914, https://openalex.org/W2100495367, https://openalex.org/W2337453828, https://openalex.org/W2341058432, https://openalex.org/W2122361470, https://openalex.org/W2912799180, https://openalex.org/W1818594852, https://openalex.org/W2962791923, https://openalex.org/W3015832418, https://openalex.org/W2777342313, https://openalex.org/W3014352273, https://openalex.org/W2897879219, https://openalex.org/W3176309086, https://openalex.org/W2753526808, https://openalex.org/W4293519096, https://openalex.org/W4390640588, https://openalex.org/W3199265481, https://openalex.org/W2963899855, https://openalex.org/W4386065706, https://openalex.org/W3101768930, https://openalex.org/W3035802502, https://openalex.org/W3177187266, https://openalex.org/W4221027477, https://openalex.org/W6802617519, https://openalex.org/W3024238458, https://openalex.org/W2960737790, https://openalex.org/W4310429784 |
| referenced_works_count | 89 |
| abstract_inverted_index.a | 24, 112 |
| abstract_inverted_index.It | 140 |
| abstract_inverted_index.as | 77 |
| abstract_inverted_index.in | 2, 53, 172 |
| abstract_inverted_index.is | 6, 75, 124 |
| abstract_inverted_index.of | 14, 33, 95, 107, 164 |
| abstract_inverted_index.on | 30, 126 |
| abstract_inverted_index.to | 41, 85, 101 |
| abstract_inverted_index.The | 68, 121 |
| abstract_inverted_index.and | 43, 60, 89, 105, 115, 134, 153, 155 |
| abstract_inverted_index.are | 39 |
| abstract_inverted_index.for | 8, 57, 63, 72, 118, 168 |
| abstract_inverted_index.its | 99 |
| abstract_inverted_index.low | 54 |
| abstract_inverted_index.the | 31, 34, 82, 93, 103, 109, 162, 165 |
| abstract_inverted_index.two | 127 |
| abstract_inverted_index.(MS) | 36 |
| abstract_inverted_index.CUHK | 135 |
| abstract_inverted_index.Data | 26 |
| abstract_inverted_index.Ped2 | 133 |
| abstract_inverted_index.This | 17 |
| abstract_inverted_index.UCSD | 132 |
| abstract_inverted_index.both | 87 |
| abstract_inverted_index.each | 73 |
| abstract_inverted_index.from | 48 |
| abstract_inverted_index.than | 143 |
| abstract_inverted_index.used | 40, 129 |
| abstract_inverted_index.with | 65, 81 |
| abstract_inverted_index.Plot. | 37 |
| abstract_inverted_index.These | 159 |
| abstract_inverted_index.Using | 98 |
| abstract_inverted_index.data, | 51, 80 |
| abstract_inverted_index.error | 70 |
| abstract_inverted_index.frame | 74 |
| abstract_inverted_index.learn | 42 |
| abstract_inverted_index.shape | 90, 106 |
| abstract_inverted_index.study | 18 |
| abstract_inverted_index.video | 4, 20, 174 |
| abstract_inverted_index.(e.g., | 148 |
| abstract_inverted_index.Depth, | 152 |
| abstract_inverted_index.better | 142 |
| abstract_inverted_index.errors | 56, 62 |
| abstract_inverted_index.frames | 59, 64 |
| abstract_inverted_index.higher | 61 |
| abstract_inverted_index.matrix | 71 |
| abstract_inverted_index.normal | 45, 58 |
| abstract_inverted_index.offers | 111 |
| abstract_inverted_index.public | 9 |
| abstract_inverted_index.scenes | 5 |
| abstract_inverted_index.timely | 12 |
| abstract_inverted_index.widely | 128 |
| abstract_inverted_index.within | 23 |
| abstract_inverted_index.Avenue, | 136 |
| abstract_inverted_index.FBPlot, | 149 |
| abstract_inverted_index.MS-Plot | 83, 110 |
| abstract_inverted_index.TVDMSS, | 150 |
| abstract_inverted_index.analyze | 86 |
| abstract_inverted_index.anomaly | 21, 96, 119, 170 |
| abstract_inverted_index.applied | 84 |
| abstract_inverted_index.crowded | 3, 173 |
| abstract_inverted_index.results | 160 |
| abstract_inverted_index.safety, | 10 |
| abstract_inverted_index.scenes. | 175 |
| abstract_inverted_index.several | 156 |
| abstract_inverted_index.treated | 76 |
| abstract_inverted_index.Analysis | 27 |
| abstract_inverted_index.Extremal | 151 |
| abstract_inverted_index.accuracy | 94 |
| abstract_inverted_index.capacity | 100 |
| abstract_inverted_index.critical | 7 |
| abstract_inverted_index.enabling | 11 |
| abstract_inverted_index.evaluate | 102 |
| abstract_inverted_index.explores | 19 |
| abstract_inverted_index.focusing | 29 |
| abstract_inverted_index.methods. | 158 |
| abstract_inverted_index.patterns | 47 |
| abstract_inverted_index.performs | 141 |
| abstract_inverted_index.proposed | 122 |
| abstract_inverted_index.threats. | 16 |
| abstract_inverted_index.training | 50 |
| abstract_inverted_index.Detecting | 0 |
| abstract_inverted_index.anomalies | 1 |
| abstract_inverted_index.benchmark | 130 |
| abstract_inverted_index.datasets, | 131 |
| abstract_inverted_index.detection | 22, 171 |
| abstract_inverted_index.detectors | 147 |
| abstract_inverted_index.effective | 169 |
| abstract_inverted_index.enhancing | 92 |
| abstract_inverted_index.evaluated | 125 |
| abstract_inverted_index.framework | 117, 167 |
| abstract_inverted_index.highlight | 161 |
| abstract_inverted_index.magnitude | 88, 104 |
| abstract_inverted_index.potential | 15, 66, 163 |
| abstract_inverted_index.promising | 138 |
| abstract_inverted_index.resulting | 52 |
| abstract_inverted_index.Functional | 25 |
| abstract_inverted_index.anomalies. | 67 |
| abstract_inverted_index.behavioral | 46 |
| abstract_inverted_index.detection. | 97, 120 |
| abstract_inverted_index.framework, | 28 |
| abstract_inverted_index.functional | 79, 146 |
| abstract_inverted_index.principled | 114 |
| abstract_inverted_index.univariate | 145 |
| abstract_inverted_index.application | 32 |
| abstract_inverted_index.deviations, | 91, 108 |
| abstract_inverted_index.methodology | 123 |
| abstract_inverted_index.reconstruct | 44 |
| abstract_inverted_index.traditional | 144 |
| abstract_inverted_index.Autoencoders | 38 |
| abstract_inverted_index.Outliergram) | 154 |
| abstract_inverted_index.anomaly-free | 49 |
| abstract_inverted_index.multivariate | 78 |
| abstract_inverted_index.performance. | 139 |
| abstract_inverted_index.MS-Plot-based | 166 |
| abstract_inverted_index.demonstrating | 137 |
| abstract_inverted_index.interpretable | 116 |
| abstract_inverted_index.statistically | 113 |
| abstract_inverted_index.identification | 13 |
| abstract_inverted_index.reconstruction | 55, 69 |
| abstract_inverted_index.Magnitude-Shape | 35 |
| abstract_inverted_index.state-of-the-art | 157 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.5600000023841858 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.96781456 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |