Exploring the particularities of the method object-based in the precipitation forecast evaluation Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.6084/m9.figshare.14282018
Numerical Weather Prediction Models (NWPM) are based on computational methods applied to predict meteorological phenomena from the numerical integration of equations that describe the movement of the atmospheric components. Among the variables predicted by NWPM, precipitation is one of the most important, and it is also the most difficult to obtain good results in the positioning, intensity, and extension of the events. One of the sources of uncertainty in the quality of these forecasts is the evaluation method because conventional methods do not evaluate the spatial aspects appropriately. The objective of this study is to propose and validate a methodology of object-based diagnostic evaluation using Object-Based Diagnostic Evaluation (MODE) algorithm implemented in the Community System for the Evaluation of Numerical Models of Weather and Climate Prediction (SCANTEC). Experiments using idealized cases are presented, which allow validate the implementation of the method and show its advantages over conventional evaluation metrics. The results of this method are also presented in the comparison of the real precipitation forecasts generated by routinely used models in CPTEC as proof of concept, exemplifying its use to explore the available metrics. The results demonstrate the great potential of the object-based methodology for the evolution of the NWPM.
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.6084/m9.figshare.14282018
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394131278
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394131278Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.6084/m9.figshare.14282018Digital Object Identifier
- Title
-
Exploring the particularities of the method object-based in the precipitation forecast evaluationWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-01Full publication date if available
- Authors
-
Arletis Roque Carrasco, Luiz Fernando Sapucci, João Gerd Zell de Mattos, Maibys Sierra Lorenzo, Israél Borrajero MontejoList of authors in order
- Landing page
-
https://doi.org/10.6084/m9.figshare.14282018Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.6084/m9.figshare.14282018Direct OA link when available
- Concepts
-
Precipitation, Object (grammar), Computer science, Meteorology, Environmental science, Climatology, Geography, Artificial intelligence, GeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394131278 |
|---|---|
| doi | https://doi.org/10.6084/m9.figshare.14282018 |
| ids.doi | https://doi.org/10.6084/m9.figshare.14282018 |
| ids.openalex | https://openalex.org/W4394131278 |
| fwci | |
| type | dataset |
| title | Exploring the particularities of the method object-based in the precipitation forecast evaluation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T14157 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.5023999810218811 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2312 |
| topics[0].subfield.display_name | Water Science and Technology |
| topics[0].display_name | Environmental and Agricultural Sciences |
| topics[1].id | https://openalex.org/T13890 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.49799999594688416 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1902 |
| topics[1].subfield.display_name | Atmospheric Science |
| topics[1].display_name | Remote Sensing and Land Use |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C107054158 |
| concepts[0].level | 2 |
| concepts[0].score | 0.625505805015564 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q25257 |
| concepts[0].display_name | Precipitation |
| concepts[1].id | https://openalex.org/C2781238097 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6038287281990051 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[1].display_name | Object (grammar) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4414632320404053 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C153294291 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4061287045478821 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[3].display_name | Meteorology |
| concepts[4].id | https://openalex.org/C39432304 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3902716040611267 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[4].display_name | Environmental science |
| concepts[5].id | https://openalex.org/C49204034 |
| concepts[5].level | 1 |
| concepts[5].score | 0.32702741026878357 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q52139 |
| concepts[5].display_name | Climatology |
| concepts[6].id | https://openalex.org/C205649164 |
| concepts[6].level | 0 |
| concepts[6].score | 0.32255327701568604 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[6].display_name | Geography |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.2649987041950226 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C127313418 |
| concepts[8].level | 0 |
| concepts[8].score | 0.18311992287635803 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[8].display_name | Geology |
| keywords[0].id | https://openalex.org/keywords/precipitation |
| keywords[0].score | 0.625505805015564 |
| keywords[0].display_name | Precipitation |
| keywords[1].id | https://openalex.org/keywords/object |
| keywords[1].score | 0.6038287281990051 |
| keywords[1].display_name | Object (grammar) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4414632320404053 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/meteorology |
| keywords[3].score | 0.4061287045478821 |
| keywords[3].display_name | Meteorology |
| keywords[4].id | https://openalex.org/keywords/environmental-science |
| keywords[4].score | 0.3902716040611267 |
| keywords[4].display_name | Environmental science |
| keywords[5].id | https://openalex.org/keywords/climatology |
| keywords[5].score | 0.32702741026878357 |
| keywords[5].display_name | Climatology |
| keywords[6].id | https://openalex.org/keywords/geography |
| keywords[6].score | 0.32255327701568604 |
| keywords[6].display_name | Geography |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.2649987041950226 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/geology |
| keywords[8].score | 0.18311992287635803 |
| keywords[8].display_name | Geology |
| language | en |
| locations[0].id | doi:10.6084/m9.figshare.14282018 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.6084/m9.figshare.14282018 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5057874527 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Arletis Roque Carrasco |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Arletis Roque Carrasco |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5071794597 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8420-8033 |
| authorships[1].author.display_name | Luiz Fernando Sapucci |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Luiz Fernando Sapucci |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5024683293 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2678-673X |
| authorships[2].author.display_name | João Gerd Zell de Mattos |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | João Gerd Zell De Mattos |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5035515891 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4838-1474 |
| authorships[3].author.display_name | Maibys Sierra Lorenzo |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Maibys Sierra Lorenzo |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5001243190 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Israél Borrajero Montejo |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Israel Borrajero Montejo |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.6084/m9.figshare.14282018 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Exploring the particularities of the method object-based in the precipitation forecast evaluation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T14157 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.5023999810218811 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2312 |
| primary_topic.subfield.display_name | Water Science and Technology |
| primary_topic.display_name | Environmental and Agricultural Sciences |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2364982659, https://openalex.org/W2999352024, https://openalex.org/W2035969729, https://openalex.org/W2350173077, https://openalex.org/W2487722720, https://openalex.org/W2358981970, https://openalex.org/W2377189769, https://openalex.org/W2096091932, https://openalex.org/W2354666346 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.6084/m9.figshare.14282018 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.6084/m9.figshare.14282018 |
| primary_location.id | doi:10.6084/m9.figshare.14282018 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.6084/m9.figshare.14282018 |
| publication_date | 2021-01-01 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 99 |
| abstract_inverted_index.as | 173 |
| abstract_inverted_index.by | 34, 167 |
| abstract_inverted_index.do | 82 |
| abstract_inverted_index.in | 54, 69, 112, 158, 171 |
| abstract_inverted_index.is | 37, 45, 75, 94 |
| abstract_inverted_index.it | 44 |
| abstract_inverted_index.of | 20, 26, 39, 60, 64, 67, 72, 91, 101, 119, 122, 139, 152, 161, 175, 191, 198 |
| abstract_inverted_index.on | 8 |
| abstract_inverted_index.to | 12, 50, 95, 180 |
| abstract_inverted_index.One | 63 |
| abstract_inverted_index.The | 89, 150, 185 |
| abstract_inverted_index.and | 43, 58, 97, 124, 142 |
| abstract_inverted_index.are | 6, 132, 155 |
| abstract_inverted_index.for | 116, 195 |
| abstract_inverted_index.its | 144, 178 |
| abstract_inverted_index.not | 83 |
| abstract_inverted_index.one | 38 |
| abstract_inverted_index.the | 17, 24, 27, 31, 40, 47, 55, 61, 65, 70, 76, 85, 113, 117, 137, 140, 159, 162, 182, 188, 192, 196, 199 |
| abstract_inverted_index.use | 179 |
| abstract_inverted_index.also | 46, 156 |
| abstract_inverted_index.from | 16 |
| abstract_inverted_index.good | 52 |
| abstract_inverted_index.most | 41, 48 |
| abstract_inverted_index.over | 146 |
| abstract_inverted_index.real | 163 |
| abstract_inverted_index.show | 143 |
| abstract_inverted_index.that | 22 |
| abstract_inverted_index.this | 92, 153 |
| abstract_inverted_index.used | 169 |
| abstract_inverted_index.Among | 30 |
| abstract_inverted_index.CPTEC | 172 |
| abstract_inverted_index.NWPM, | 35 |
| abstract_inverted_index.NWPM. | 200 |
| abstract_inverted_index.allow | 135 |
| abstract_inverted_index.based | 7 |
| abstract_inverted_index.cases | 131 |
| abstract_inverted_index.great | 189 |
| abstract_inverted_index.proof | 174 |
| abstract_inverted_index.study | 93 |
| abstract_inverted_index.these | 73 |
| abstract_inverted_index.using | 105, 129 |
| abstract_inverted_index.which | 134 |
| abstract_inverted_index.(MODE) | 109 |
| abstract_inverted_index.(NWPM) | 5 |
| abstract_inverted_index.Models | 4, 121 |
| abstract_inverted_index.System | 115 |
| abstract_inverted_index.method | 78, 141, 154 |
| abstract_inverted_index.models | 170 |
| abstract_inverted_index.obtain | 51 |
| abstract_inverted_index.Climate | 125 |
| abstract_inverted_index.Weather | 2, 123 |
| abstract_inverted_index.applied | 11 |
| abstract_inverted_index.aspects | 87 |
| abstract_inverted_index.because | 79 |
| abstract_inverted_index.events. | 62 |
| abstract_inverted_index.explore | 181 |
| abstract_inverted_index.methods | 10, 81 |
| abstract_inverted_index.predict | 13 |
| abstract_inverted_index.propose | 96 |
| abstract_inverted_index.quality | 71 |
| abstract_inverted_index.results | 53, 151, 186 |
| abstract_inverted_index.sources | 66 |
| abstract_inverted_index.spatial | 86 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.concept, | 176 |
| abstract_inverted_index.describe | 23 |
| abstract_inverted_index.evaluate | 84 |
| abstract_inverted_index.metrics. | 149, 184 |
| abstract_inverted_index.movement | 25 |
| abstract_inverted_index.validate | 98, 136 |
| abstract_inverted_index.Community | 114 |
| abstract_inverted_index.Numerical | 1, 120 |
| abstract_inverted_index.algorithm | 110 |
| abstract_inverted_index.available | 183 |
| abstract_inverted_index.difficult | 49 |
| abstract_inverted_index.equations | 21 |
| abstract_inverted_index.evolution | 197 |
| abstract_inverted_index.extension | 59 |
| abstract_inverted_index.forecasts | 74, 165 |
| abstract_inverted_index.generated | 166 |
| abstract_inverted_index.idealized | 130 |
| abstract_inverted_index.numerical | 18 |
| abstract_inverted_index.objective | 90 |
| abstract_inverted_index.phenomena | 15 |
| abstract_inverted_index.potential | 190 |
| abstract_inverted_index.predicted | 33 |
| abstract_inverted_index.presented | 157 |
| abstract_inverted_index.routinely | 168 |
| abstract_inverted_index.variables | 32 |
| abstract_inverted_index.(SCANTEC). | 127 |
| abstract_inverted_index.Diagnostic | 107 |
| abstract_inverted_index.Evaluation | 108, 118 |
| abstract_inverted_index.Prediction | 3, 126 |
| abstract_inverted_index.advantages | 145 |
| abstract_inverted_index.comparison | 160 |
| abstract_inverted_index.diagnostic | 103 |
| abstract_inverted_index.evaluation | 77, 104, 148 |
| abstract_inverted_index.important, | 42 |
| abstract_inverted_index.intensity, | 57 |
| abstract_inverted_index.presented, | 133 |
| abstract_inverted_index.Experiments | 128 |
| abstract_inverted_index.atmospheric | 28 |
| abstract_inverted_index.components. | 29 |
| abstract_inverted_index.demonstrate | 187 |
| abstract_inverted_index.implemented | 111 |
| abstract_inverted_index.integration | 19 |
| abstract_inverted_index.methodology | 100, 194 |
| abstract_inverted_index.uncertainty | 68 |
| abstract_inverted_index.Object-Based | 106 |
| abstract_inverted_index.conventional | 80, 147 |
| abstract_inverted_index.exemplifying | 177 |
| abstract_inverted_index.object-based | 102, 193 |
| abstract_inverted_index.positioning, | 56 |
| abstract_inverted_index.computational | 9 |
| abstract_inverted_index.precipitation | 36, 164 |
| abstract_inverted_index.appropriately. | 88 |
| abstract_inverted_index.implementation | 138 |
| abstract_inverted_index.meteorological | 14 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |