Exploring the potential and limitations of deep learning and explainable AI for longitudinal life course analysis Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1186/s12889-025-22705-4
Background Understanding the complex interplay between life course exposures, such as adverse childhood experiences and environmental factors, and disease risk is essential for developing effective public health interventions. Traditional epidemiological methods, such as regression models and risk scoring, are limited in their ability to capture the non-linear and temporally dynamic nature of these relationships. Deep learning (DL) and explainable artificial intelligence (XAI) are increasingly applied within healthcare settings to identify influential risk factors and enable personalised interventions. However, significant gaps remain in understanding their utility and limitations, especially for sparse longitudinal life course data and how the influential patterns identified using explainability are linked to underlying causal mechanisms. Methods We conducted a controlled simulation study to assess the performance of various state-of-the-art DL architectures including CNNs and (attention-based) RNNs against XGBoost and logistic regression. Input data was simulated to reflect a generic and generalisable scenario with different rules used to generate multiple realistic outcomes based upon epidemiological concepts. Multiple metrics were used to assess model performance in the presence of class imbalance and SHAP values were calculated. Results We find that DL methods can accurately detect dynamic relationships that baseline linear models and tree-based methods cannot. However, there is no one model that consistently outperforms the others across all scenarios. We further identify the superior performance of DL models in handling sparse feature availability over time compared to traditional machine learning approaches. Additionally, we examine the interpretability provided by SHAP values, demonstrating that these explanations often misalign with causal relationships, despite excellent predictive and calibrative performance. Conclusions These insights provide a foundation for future research applying DL and XAI to life course data, highlighting the challenges associated with sparse healthcare data, and the critical need for advancing interpretability frameworks in personalised public health.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1186/s12889-025-22705-4
- https://bmcpublichealth.biomedcentral.com/counter/pdf/10.1186/s12889-025-22705-4
- OA Status
- gold
- Cited By
- 6
- References
- 64
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409733048
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409733048Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1186/s12889-025-22705-4Digital Object Identifier
- Title
-
Exploring the potential and limitations of deep learning and explainable AI for longitudinal life course analysisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-24Full publication date if available
- Authors
-
Helen Coupland, Neil Scheidwasser, Alexandros Katsiferis, Megan Davies, Seth Flaxman, Naja Hulvej Rod, Swapnil Mishra, Samir Bhatt, H. Juliette T. UnwinList of authors in order
- Landing page
-
https://doi.org/10.1186/s12889-025-22705-4Publisher landing page
- PDF URL
-
https://bmcpublichealth.biomedcentral.com/counter/pdf/10.1186/s12889-025-22705-4Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://bmcpublichealth.biomedcentral.com/counter/pdf/10.1186/s12889-025-22705-4Direct OA link when available
- Concepts
-
Biostatistics, Medicine, Course (navigation), Life course approach, Public health, Epidemiology, Gerontology, Medical education, Pathology, Developmental psychology, Psychology, Physics, AstronomyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6Per-year citation counts (last 5 years)
- References (count)
-
64Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409733048 |
|---|---|
| doi | https://doi.org/10.1186/s12889-025-22705-4 |
| ids.doi | https://doi.org/10.1186/s12889-025-22705-4 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40275204 |
| ids.openalex | https://openalex.org/W4409733048 |
| fwci | 28.91847088 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000077321 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Deep Learning |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D008137 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Longitudinal Studies |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D001185 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Artificial Intelligence |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D006801 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Humans |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000077321 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Deep Learning |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D008137 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Longitudinal Studies |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D001185 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Artificial Intelligence |
| type | article |
| title | Exploring the potential and limitations of deep learning and explainable AI for longitudinal life course analysis |
| awards[0].id | https://openalex.org/G4726761078 |
| awards[0].funder_id | https://openalex.org/F4320319990 |
| awards[0].display_name | |
| awards[0].funder_award_id | NIHR200908 |
| awards[0].funder_display_name | National Institute for Health and Care Research |
| awards[1].id | https://openalex.org/G6367209773 |
| awards[1].funder_id | https://openalex.org/F4320334678 |
| awards[1].display_name | |
| awards[1].funder_award_id | no. 101124807 |
| awards[1].funder_display_name | European Research Council |
| awards[2].id | https://openalex.org/G551833079 |
| awards[2].funder_id | https://openalex.org/F4320325957 |
| awards[2].display_name | |
| awards[2].funder_award_id | NNF20OC0059309 |
| awards[2].funder_display_name | Novo Nordisk Fonden |
| awards[3].id | https://openalex.org/G2743368069 |
| awards[3].funder_id | https://openalex.org/F4320334627 |
| awards[3].display_name | |
| awards[3].funder_award_id | EP/V002910/2 |
| awards[3].funder_display_name | Engineering and Physical Sciences Research Council |
| awards[4].id | https://openalex.org/G7582467962 |
| awards[4].funder_id | https://openalex.org/F4320320709 |
| awards[4].display_name | |
| awards[4].funder_award_id | NRF-NRFF15-2023-0010 |
| awards[4].funder_display_name | National Research Foundation Singapore |
| awards[5].id | https://openalex.org/G7765143013 |
| awards[5].funder_id | https://openalex.org/F4320316572 |
| awards[5].display_name | |
| awards[5].funder_award_id | G-22-63345 |
| awards[5].funder_display_name | Schmidt Family Foundation |
| awards[6].id | https://openalex.org/G6492113386 |
| awards[6].funder_id | https://openalex.org/F4320334626 |
| awards[6].display_name | |
| awards[6].funder_award_id | MR/X020258/1 |
| awards[6].funder_display_name | Medical Research Council |
| awards[7].id | https://openalex.org/G6207269621 |
| awards[7].funder_id | https://openalex.org/F4320320943 |
| awards[7].display_name | |
| awards[7].funder_award_id | DNRF160 |
| awards[7].funder_display_name | Danmarks Grundforskningsfond |
| biblio.issue | 1 |
| biblio.volume | 25 |
| biblio.last_page | 1520 |
| biblio.first_page | 1520 |
| topics[0].id | https://openalex.org/T13702 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.991599977016449 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning in Healthcare |
| topics[1].id | https://openalex.org/T12011 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9904999732971191 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3317 |
| topics[1].subfield.display_name | Demography |
| topics[1].display_name | Insurance, Mortality, Demography, Risk Management |
| topics[2].id | https://openalex.org/T14509 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9688000082969666 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | demographic modeling and climate adaptation |
| funders[0].id | https://openalex.org/F4320316572 |
| funders[0].ror | |
| funders[0].display_name | Schmidt Family Foundation |
| funders[1].id | https://openalex.org/F4320319990 |
| funders[1].ror | https://ror.org/0187kwz08 |
| funders[1].display_name | National Institute for Health and Care Research |
| funders[2].id | https://openalex.org/F4320320709 |
| funders[2].ror | https://ror.org/03cpyc314 |
| funders[2].display_name | National Research Foundation Singapore |
| funders[3].id | https://openalex.org/F4320320943 |
| funders[3].ror | https://ror.org/00znyv691 |
| funders[3].display_name | Danmarks Grundforskningsfond |
| funders[4].id | https://openalex.org/F4320324424 |
| funders[4].ror | https://ror.org/02rcazp29 |
| funders[4].display_name | TrygFonden |
| funders[5].id | https://openalex.org/F4320325957 |
| funders[5].ror | https://ror.org/04txyc737 |
| funders[5].display_name | Novo Nordisk Fonden |
| funders[6].id | https://openalex.org/F4320334626 |
| funders[6].ror | https://ror.org/03x94j517 |
| funders[6].display_name | Medical Research Council |
| funders[7].id | https://openalex.org/F4320334627 |
| funders[7].ror | https://ror.org/0439y7842 |
| funders[7].display_name | Engineering and Physical Sciences Research Council |
| funders[8].id | https://openalex.org/F4320334678 |
| funders[8].ror | https://ror.org/0472cxd90 |
| funders[8].display_name | European Research Council |
| is_xpac | False |
| apc_list.value | 1870 |
| apc_list.currency | GBP |
| apc_list.value_usd | 2293 |
| apc_paid.value | 1870 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 2293 |
| concepts[0].id | https://openalex.org/C140556311 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9152343273162842 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q214746 |
| concepts[0].display_name | Biostatistics |
| concepts[1].id | https://openalex.org/C71924100 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8021386861801147 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[1].display_name | Medicine |
| concepts[2].id | https://openalex.org/C2777552389 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7442613840103149 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1962728 |
| concepts[2].display_name | Course (navigation) |
| concepts[3].id | https://openalex.org/C1691868 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7343084216117859 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1811049 |
| concepts[3].display_name | Life course approach |
| concepts[4].id | https://openalex.org/C138816342 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5697755217552185 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q189603 |
| concepts[4].display_name | Public health |
| concepts[5].id | https://openalex.org/C107130276 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4458172023296356 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q133805 |
| concepts[5].display_name | Epidemiology |
| concepts[6].id | https://openalex.org/C74909509 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3725239336490631 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q10387 |
| concepts[6].display_name | Gerontology |
| concepts[7].id | https://openalex.org/C509550671 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3319123089313507 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q126945 |
| concepts[7].display_name | Medical education |
| concepts[8].id | https://openalex.org/C142724271 |
| concepts[8].level | 1 |
| concepts[8].score | 0.1335110366344452 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[8].display_name | Pathology |
| concepts[9].id | https://openalex.org/C138496976 |
| concepts[9].level | 1 |
| concepts[9].score | 0.1138271689414978 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q175002 |
| concepts[9].display_name | Developmental psychology |
| concepts[10].id | https://openalex.org/C15744967 |
| concepts[10].level | 0 |
| concepts[10].score | 0.07003137469291687 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[10].display_name | Psychology |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C1276947 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[12].display_name | Astronomy |
| keywords[0].id | https://openalex.org/keywords/biostatistics |
| keywords[0].score | 0.9152343273162842 |
| keywords[0].display_name | Biostatistics |
| keywords[1].id | https://openalex.org/keywords/medicine |
| keywords[1].score | 0.8021386861801147 |
| keywords[1].display_name | Medicine |
| keywords[2].id | https://openalex.org/keywords/course |
| keywords[2].score | 0.7442613840103149 |
| keywords[2].display_name | Course (navigation) |
| keywords[3].id | https://openalex.org/keywords/life-course-approach |
| keywords[3].score | 0.7343084216117859 |
| keywords[3].display_name | Life course approach |
| keywords[4].id | https://openalex.org/keywords/public-health |
| keywords[4].score | 0.5697755217552185 |
| keywords[4].display_name | Public health |
| keywords[5].id | https://openalex.org/keywords/epidemiology |
| keywords[5].score | 0.4458172023296356 |
| keywords[5].display_name | Epidemiology |
| keywords[6].id | https://openalex.org/keywords/gerontology |
| keywords[6].score | 0.3725239336490631 |
| keywords[6].display_name | Gerontology |
| keywords[7].id | https://openalex.org/keywords/medical-education |
| keywords[7].score | 0.3319123089313507 |
| keywords[7].display_name | Medical education |
| keywords[8].id | https://openalex.org/keywords/pathology |
| keywords[8].score | 0.1335110366344452 |
| keywords[8].display_name | Pathology |
| keywords[9].id | https://openalex.org/keywords/developmental-psychology |
| keywords[9].score | 0.1138271689414978 |
| keywords[9].display_name | Developmental psychology |
| keywords[10].id | https://openalex.org/keywords/psychology |
| keywords[10].score | 0.07003137469291687 |
| keywords[10].display_name | Psychology |
| language | en |
| locations[0].id | doi:10.1186/s12889-025-22705-4 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S200437886 |
| locations[0].source.issn | 1471-2458 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1471-2458 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | BMC Public Health |
| locations[0].source.host_organization | https://openalex.org/P4310320256 |
| locations[0].source.host_organization_name | BioMed Central |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | BioMed Central, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://bmcpublichealth.biomedcentral.com/counter/pdf/10.1186/s12889-025-22705-4 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | BMC Public Health |
| locations[0].landing_page_url | https://doi.org/10.1186/s12889-025-22705-4 |
| locations[1].id | pmid:40275204 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | BMC public health |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40275204 |
| locations[2].id | pmh:oai:doaj.org/article:9e9b6108d41247adb20ad5d9e2f7732e |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | BMC Public Health, Vol 25, Iss 1, Pp 1-15 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/9e9b6108d41247adb20ad5d9e2f7732e |
| locations[3].id | pmh:oai:europepmc.org:10830397 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12020094 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5069674396 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3581-1404 |
| authorships[0].author.display_name | Helen Coupland |
| authorships[0].countries | DK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I124055696 |
| authorships[0].affiliations[0].raw_affiliation_string | Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark. |
| authorships[0].institutions[0].id | https://openalex.org/I124055696 |
| authorships[0].institutions[0].ror | https://ror.org/035b05819 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I124055696 |
| authorships[0].institutions[0].country_code | DK |
| authorships[0].institutions[0].display_name | University of Copenhagen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Helen Coupland |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark. |
| authorships[1].author.id | https://openalex.org/A5055084920 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9922-0289 |
| authorships[1].author.display_name | Neil Scheidwasser |
| authorships[1].countries | DK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I124055696 |
| authorships[1].affiliations[0].raw_affiliation_string | Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark. |
| authorships[1].institutions[0].id | https://openalex.org/I124055696 |
| authorships[1].institutions[0].ror | https://ror.org/035b05819 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I124055696 |
| authorships[1].institutions[0].country_code | DK |
| authorships[1].institutions[0].display_name | University of Copenhagen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Neil Scheidwasser |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark. |
| authorships[2].author.id | https://openalex.org/A5078415398 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0957-9835 |
| authorships[2].author.display_name | Alexandros Katsiferis |
| authorships[2].countries | DK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I124055696 |
| authorships[2].affiliations[0].raw_affiliation_string | Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark. |
| authorships[2].institutions[0].id | https://openalex.org/I124055696 |
| authorships[2].institutions[0].ror | https://ror.org/035b05819 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I124055696 |
| authorships[2].institutions[0].country_code | DK |
| authorships[2].institutions[0].display_name | University of Copenhagen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Alexandros Katsiferis |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark. |
| authorships[3].author.id | https://openalex.org/A5083352521 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0899-6386 |
| authorships[3].author.display_name | Megan Davies |
| authorships[3].countries | DK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I124055696 |
| authorships[3].affiliations[0].raw_affiliation_string | Copenhagen Health Complexity Center, Department of Public Health, University of Copenhagen, Copenhagen, Denmark. |
| authorships[3].institutions[0].id | https://openalex.org/I124055696 |
| authorships[3].institutions[0].ror | https://ror.org/035b05819 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I124055696 |
| authorships[3].institutions[0].country_code | DK |
| authorships[3].institutions[0].display_name | University of Copenhagen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Megan Davies |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Copenhagen Health Complexity Center, Department of Public Health, University of Copenhagen, Copenhagen, Denmark. |
| authorships[4].author.id | https://openalex.org/A5032005702 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2477-4217 |
| authorships[4].author.display_name | Seth Flaxman |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I40120149 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Oxford, Oxford, UK. |
| authorships[4].institutions[0].id | https://openalex.org/I40120149 |
| authorships[4].institutions[0].ror | https://ror.org/052gg0110 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I40120149 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | University of Oxford |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Seth Flaxman |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Science, University of Oxford, Oxford, UK. |
| authorships[5].author.id | https://openalex.org/A5077913240 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6400-5105 |
| authorships[5].author.display_name | Naja Hulvej Rod |
| authorships[5].countries | DK |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I124055696 |
| authorships[5].affiliations[0].raw_affiliation_string | Copenhagen Health Complexity Center, Department of Public Health, University of Copenhagen, Copenhagen, Denmark. |
| authorships[5].institutions[0].id | https://openalex.org/I124055696 |
| authorships[5].institutions[0].ror | https://ror.org/035b05819 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I124055696 |
| authorships[5].institutions[0].country_code | DK |
| authorships[5].institutions[0].display_name | University of Copenhagen |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Naja Hulvej Rod |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Copenhagen Health Complexity Center, Department of Public Health, University of Copenhagen, Copenhagen, Denmark. |
| authorships[6].author.id | https://openalex.org/A5063912611 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-8759-5902 |
| authorships[6].author.display_name | Swapnil Mishra |
| authorships[6].countries | SG |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I165932596, https://openalex.org/I4210150261 |
| authorships[6].affiliations[0].raw_affiliation_string | Saw Swee Hock School of Public Health & Institute of Data Science, National University of Singapore, Singapore, Singapore. |
| authorships[6].institutions[0].id | https://openalex.org/I4210150261 |
| authorships[6].institutions[0].ror | https://ror.org/05tjjsh18 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210150261 |
| authorships[6].institutions[0].country_code | SG |
| authorships[6].institutions[0].display_name | National University Health System |
| authorships[6].institutions[1].id | https://openalex.org/I165932596 |
| authorships[6].institutions[1].ror | https://ror.org/01tgyzw49 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I165932596 |
| authorships[6].institutions[1].country_code | SG |
| authorships[6].institutions[1].display_name | National University of Singapore |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Swapnil Mishra |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Saw Swee Hock School of Public Health & Institute of Data Science, National University of Singapore, Singapore, Singapore. |
| authorships[7].author.id | https://openalex.org/A5091290326 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-0891-4611 |
| authorships[7].author.display_name | Samir Bhatt |
| authorships[7].countries | DK, GB |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I47508984 |
| authorships[7].affiliations[0].raw_affiliation_string | MRC Centre for Global Infectious Disease Analysis, Imperial College, London, UK. [email protected]. |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I124055696 |
| authorships[7].affiliations[1].raw_affiliation_string | Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark. [email protected]. |
| authorships[7].institutions[0].id | https://openalex.org/I124055696 |
| authorships[7].institutions[0].ror | https://ror.org/035b05819 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I124055696 |
| authorships[7].institutions[0].country_code | DK |
| authorships[7].institutions[0].display_name | University of Copenhagen |
| authorships[7].institutions[1].id | https://openalex.org/I47508984 |
| authorships[7].institutions[1].ror | https://ror.org/041kmwe10 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I47508984 |
| authorships[7].institutions[1].country_code | GB |
| authorships[7].institutions[1].display_name | Imperial College London |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Samir Bhatt |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | MRC Centre for Global Infectious Disease Analysis, Imperial College, London, UK. [email protected]., Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark. [email protected]. |
| authorships[8].author.id | https://openalex.org/A5072980853 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-9120-4003 |
| authorships[8].author.display_name | H. Juliette T. Unwin |
| authorships[8].countries | GB |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I47508984 |
| authorships[8].affiliations[0].raw_affiliation_string | MRC Centre for Global Infectious Disease Analysis, Imperial College, London, UK. |
| authorships[8].affiliations[1].institution_ids | https://openalex.org/I36234482 |
| authorships[8].affiliations[1].raw_affiliation_string | School of Mathematics, University of Bristol, Bristol, UK. |
| authorships[8].institutions[0].id | https://openalex.org/I47508984 |
| authorships[8].institutions[0].ror | https://ror.org/041kmwe10 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I47508984 |
| authorships[8].institutions[0].country_code | GB |
| authorships[8].institutions[0].display_name | Imperial College London |
| authorships[8].institutions[1].id | https://openalex.org/I36234482 |
| authorships[8].institutions[1].ror | https://ror.org/0524sp257 |
| authorships[8].institutions[1].type | education |
| authorships[8].institutions[1].lineage | https://openalex.org/I36234482 |
| authorships[8].institutions[1].country_code | GB |
| authorships[8].institutions[1].display_name | University of Bristol |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | H Juliette T Unwin |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | MRC Centre for Global Infectious Disease Analysis, Imperial College, London, UK., School of Mathematics, University of Bristol, Bristol, UK. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://bmcpublichealth.biomedcentral.com/counter/pdf/10.1186/s12889-025-22705-4 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Exploring the potential and limitations of deep learning and explainable AI for longitudinal life course analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-23T23:15:26.331081 |
| primary_topic.id | https://openalex.org/T13702 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.991599977016449 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning in Healthcare |
| related_works | https://openalex.org/W1977389139, https://openalex.org/W4380903871, https://openalex.org/W1563497214, https://openalex.org/W163469799, https://openalex.org/W2078010321, https://openalex.org/W2313111789, https://openalex.org/W4288871916, https://openalex.org/W2914670086, https://openalex.org/W2404087909, https://openalex.org/W2750676651 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1186/s12889-025-22705-4 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S200437886 |
| best_oa_location.source.issn | 1471-2458 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1471-2458 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | BMC Public Health |
| best_oa_location.source.host_organization | https://openalex.org/P4310320256 |
| best_oa_location.source.host_organization_name | BioMed Central |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | BioMed Central, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://bmcpublichealth.biomedcentral.com/counter/pdf/10.1186/s12889-025-22705-4 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | BMC Public Health |
| best_oa_location.landing_page_url | https://doi.org/10.1186/s12889-025-22705-4 |
| primary_location.id | doi:10.1186/s12889-025-22705-4 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S200437886 |
| primary_location.source.issn | 1471-2458 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1471-2458 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | BMC Public Health |
| primary_location.source.host_organization | https://openalex.org/P4310320256 |
| primary_location.source.host_organization_name | BioMed Central |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | BioMed Central, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://bmcpublichealth.biomedcentral.com/counter/pdf/10.1186/s12889-025-22705-4 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | BMC Public Health |
| primary_location.landing_page_url | https://doi.org/10.1186/s12889-025-22705-4 |
| publication_date | 2025-04-24 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2768058685, https://openalex.org/W2913525136, https://openalex.org/W2043489981, https://openalex.org/W2343715481, https://openalex.org/W2123828906, https://openalex.org/W1972616797, https://openalex.org/W1974149546, https://openalex.org/W3204541589, https://openalex.org/W2976928108, https://openalex.org/W2132892239, https://openalex.org/W4224309083, https://openalex.org/W2605253636, https://openalex.org/W4323865263, https://openalex.org/W4384557662, https://openalex.org/W1983381361, https://openalex.org/W2892035503, https://openalex.org/W4402134928, https://openalex.org/W3013182397, https://openalex.org/W4403140655, https://openalex.org/W3120847358, https://openalex.org/W3165028968, https://openalex.org/W6739901393, https://openalex.org/W2896457183, https://openalex.org/W2618851150, https://openalex.org/W2999615587, https://openalex.org/W3084430883, https://openalex.org/W4205332171, https://openalex.org/W3108118145, https://openalex.org/W3185055706, https://openalex.org/W3202962983, https://openalex.org/W4212942200, https://openalex.org/W3115948762, https://openalex.org/W3183848791, https://openalex.org/W2295598076, https://openalex.org/W2766979508, https://openalex.org/W4387663429, https://openalex.org/W3012166835, https://openalex.org/W3194635212, https://openalex.org/W2123449968, https://openalex.org/W2089058697, https://openalex.org/W2062767017, https://openalex.org/W2761636731, https://openalex.org/W2551393996, https://openalex.org/W2972810968, https://openalex.org/W2096451472, https://openalex.org/W1976526581, https://openalex.org/W2996480032, https://openalex.org/W2951936974, https://openalex.org/W2610332124, https://openalex.org/W4400699302, https://openalex.org/W3216660278, https://openalex.org/W2784499877, https://openalex.org/W2973136764, https://openalex.org/W4387398177, https://openalex.org/W2516809705, https://openalex.org/W2788403449, https://openalex.org/W2963125461, https://openalex.org/W4391936052, https://openalex.org/W3098949126, https://openalex.org/W3083891030, https://openalex.org/W2076562331, https://openalex.org/W3029078373, https://openalex.org/W3121452939, https://openalex.org/W4206997729 |
| referenced_works_count | 64 |
| abstract_inverted_index.a | 112, 141, 261 |
| abstract_inverted_index.DL | 123, 182, 218, 267 |
| abstract_inverted_index.We | 110, 179, 211 |
| abstract_inverted_index.as | 11, 33 |
| abstract_inverted_index.by | 239 |
| abstract_inverted_index.in | 41, 82, 167, 220, 290 |
| abstract_inverted_index.is | 21, 199 |
| abstract_inverted_index.no | 200 |
| abstract_inverted_index.of | 52, 120, 170, 217 |
| abstract_inverted_index.to | 44, 69, 105, 116, 139, 150, 163, 228, 270 |
| abstract_inverted_index.we | 234 |
| abstract_inverted_index.XAI | 269 |
| abstract_inverted_index.all | 209 |
| abstract_inverted_index.and | 15, 18, 36, 48, 58, 74, 86, 95, 127, 132, 143, 173, 193, 254, 268, 282 |
| abstract_inverted_index.are | 39, 63, 103 |
| abstract_inverted_index.can | 184 |
| abstract_inverted_index.for | 23, 89, 263, 286 |
| abstract_inverted_index.how | 96 |
| abstract_inverted_index.one | 201 |
| abstract_inverted_index.the | 3, 46, 97, 118, 168, 206, 214, 236, 275, 283 |
| abstract_inverted_index.was | 137 |
| abstract_inverted_index.(DL) | 57 |
| abstract_inverted_index.CNNs | 126 |
| abstract_inverted_index.Deep | 55 |
| abstract_inverted_index.RNNs | 129 |
| abstract_inverted_index.SHAP | 174, 240 |
| abstract_inverted_index.data | 94, 136 |
| abstract_inverted_index.find | 180 |
| abstract_inverted_index.gaps | 80 |
| abstract_inverted_index.life | 7, 92, 271 |
| abstract_inverted_index.need | 285 |
| abstract_inverted_index.over | 225 |
| abstract_inverted_index.risk | 20, 37, 72 |
| abstract_inverted_index.such | 10, 32 |
| abstract_inverted_index.that | 181, 189, 203, 243 |
| abstract_inverted_index.time | 226 |
| abstract_inverted_index.upon | 156 |
| abstract_inverted_index.used | 149, 162 |
| abstract_inverted_index.were | 161, 176 |
| abstract_inverted_index.with | 146, 248, 278 |
| abstract_inverted_index.(XAI) | 62 |
| abstract_inverted_index.Input | 135 |
| abstract_inverted_index.These | 258 |
| abstract_inverted_index.based | 155 |
| abstract_inverted_index.class | 171 |
| abstract_inverted_index.data, | 273, 281 |
| abstract_inverted_index.model | 165, 202 |
| abstract_inverted_index.often | 246 |
| abstract_inverted_index.rules | 148 |
| abstract_inverted_index.study | 115 |
| abstract_inverted_index.their | 42, 84 |
| abstract_inverted_index.there | 198 |
| abstract_inverted_index.these | 53, 244 |
| abstract_inverted_index.using | 101 |
| abstract_inverted_index.across | 208 |
| abstract_inverted_index.assess | 117, 164 |
| abstract_inverted_index.causal | 107, 249 |
| abstract_inverted_index.course | 8, 93, 272 |
| abstract_inverted_index.detect | 186 |
| abstract_inverted_index.enable | 75 |
| abstract_inverted_index.future | 264 |
| abstract_inverted_index.health | 27 |
| abstract_inverted_index.linear | 191 |
| abstract_inverted_index.linked | 104 |
| abstract_inverted_index.models | 35, 192, 219 |
| abstract_inverted_index.nature | 51 |
| abstract_inverted_index.others | 207 |
| abstract_inverted_index.public | 26, 292 |
| abstract_inverted_index.remain | 81 |
| abstract_inverted_index.sparse | 90, 222, 279 |
| abstract_inverted_index.values | 175 |
| abstract_inverted_index.within | 66 |
| abstract_inverted_index.Methods | 109 |
| abstract_inverted_index.Results | 178 |
| abstract_inverted_index.XGBoost | 131 |
| abstract_inverted_index.ability | 43 |
| abstract_inverted_index.adverse | 12 |
| abstract_inverted_index.against | 130 |
| abstract_inverted_index.applied | 65 |
| abstract_inverted_index.between | 6 |
| abstract_inverted_index.cannot. | 196 |
| abstract_inverted_index.capture | 45 |
| abstract_inverted_index.complex | 4 |
| abstract_inverted_index.despite | 251 |
| abstract_inverted_index.disease | 19 |
| abstract_inverted_index.dynamic | 50, 187 |
| abstract_inverted_index.examine | 235 |
| abstract_inverted_index.factors | 73 |
| abstract_inverted_index.feature | 223 |
| abstract_inverted_index.further | 212 |
| abstract_inverted_index.generic | 142 |
| abstract_inverted_index.health. | 293 |
| abstract_inverted_index.limited | 40 |
| abstract_inverted_index.machine | 230 |
| abstract_inverted_index.methods | 183, 195 |
| abstract_inverted_index.metrics | 160 |
| abstract_inverted_index.provide | 260 |
| abstract_inverted_index.reflect | 140 |
| abstract_inverted_index.utility | 85 |
| abstract_inverted_index.values, | 241 |
| abstract_inverted_index.various | 121 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 78, 197 |
| abstract_inverted_index.Multiple | 159 |
| abstract_inverted_index.applying | 266 |
| abstract_inverted_index.baseline | 190 |
| abstract_inverted_index.compared | 227 |
| abstract_inverted_index.critical | 284 |
| abstract_inverted_index.factors, | 17 |
| abstract_inverted_index.generate | 151 |
| abstract_inverted_index.handling | 221 |
| abstract_inverted_index.identify | 70, 213 |
| abstract_inverted_index.insights | 259 |
| abstract_inverted_index.learning | 56, 231 |
| abstract_inverted_index.logistic | 133 |
| abstract_inverted_index.methods, | 31 |
| abstract_inverted_index.misalign | 247 |
| abstract_inverted_index.multiple | 152 |
| abstract_inverted_index.outcomes | 154 |
| abstract_inverted_index.patterns | 99 |
| abstract_inverted_index.presence | 169 |
| abstract_inverted_index.provided | 238 |
| abstract_inverted_index.research | 265 |
| abstract_inverted_index.scenario | 145 |
| abstract_inverted_index.scoring, | 38 |
| abstract_inverted_index.settings | 68 |
| abstract_inverted_index.superior | 215 |
| abstract_inverted_index.advancing | 287 |
| abstract_inverted_index.childhood | 13 |
| abstract_inverted_index.concepts. | 158 |
| abstract_inverted_index.conducted | 111 |
| abstract_inverted_index.different | 147 |
| abstract_inverted_index.effective | 25 |
| abstract_inverted_index.essential | 22 |
| abstract_inverted_index.excellent | 252 |
| abstract_inverted_index.imbalance | 172 |
| abstract_inverted_index.including | 125 |
| abstract_inverted_index.interplay | 5 |
| abstract_inverted_index.realistic | 153 |
| abstract_inverted_index.simulated | 138 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.accurately | 185 |
| abstract_inverted_index.artificial | 60 |
| abstract_inverted_index.associated | 277 |
| abstract_inverted_index.challenges | 276 |
| abstract_inverted_index.controlled | 113 |
| abstract_inverted_index.developing | 24 |
| abstract_inverted_index.especially | 88 |
| abstract_inverted_index.exposures, | 9 |
| abstract_inverted_index.foundation | 262 |
| abstract_inverted_index.frameworks | 289 |
| abstract_inverted_index.healthcare | 67, 280 |
| abstract_inverted_index.identified | 100 |
| abstract_inverted_index.non-linear | 47 |
| abstract_inverted_index.predictive | 253 |
| abstract_inverted_index.regression | 34 |
| abstract_inverted_index.scenarios. | 210 |
| abstract_inverted_index.simulation | 114 |
| abstract_inverted_index.temporally | 49 |
| abstract_inverted_index.tree-based | 194 |
| abstract_inverted_index.underlying | 106 |
| abstract_inverted_index.Conclusions | 257 |
| abstract_inverted_index.Traditional | 29 |
| abstract_inverted_index.approaches. | 232 |
| abstract_inverted_index.calculated. | 177 |
| abstract_inverted_index.calibrative | 255 |
| abstract_inverted_index.experiences | 14 |
| abstract_inverted_index.explainable | 59 |
| abstract_inverted_index.influential | 71, 98 |
| abstract_inverted_index.mechanisms. | 108 |
| abstract_inverted_index.outperforms | 205 |
| abstract_inverted_index.performance | 119, 166, 216 |
| abstract_inverted_index.regression. | 134 |
| abstract_inverted_index.significant | 79 |
| abstract_inverted_index.traditional | 229 |
| abstract_inverted_index.availability | 224 |
| abstract_inverted_index.consistently | 204 |
| abstract_inverted_index.explanations | 245 |
| abstract_inverted_index.highlighting | 274 |
| abstract_inverted_index.increasingly | 64 |
| abstract_inverted_index.intelligence | 61 |
| abstract_inverted_index.limitations, | 87 |
| abstract_inverted_index.longitudinal | 91 |
| abstract_inverted_index.performance. | 256 |
| abstract_inverted_index.personalised | 76, 291 |
| abstract_inverted_index.Additionally, | 233 |
| abstract_inverted_index.Understanding | 2 |
| abstract_inverted_index.architectures | 124 |
| abstract_inverted_index.demonstrating | 242 |
| abstract_inverted_index.environmental | 16 |
| abstract_inverted_index.generalisable | 144 |
| abstract_inverted_index.relationships | 188 |
| abstract_inverted_index.understanding | 83 |
| abstract_inverted_index.explainability | 102 |
| abstract_inverted_index.interventions. | 28, 77 |
| abstract_inverted_index.relationships, | 250 |
| abstract_inverted_index.relationships. | 54 |
| abstract_inverted_index.epidemiological | 30, 157 |
| abstract_inverted_index.interpretability | 237, 288 |
| abstract_inverted_index.state-of-the-art | 122 |
| abstract_inverted_index.(attention-based) | 128 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile.value | 0.99422719 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |