Exploring the use of NIR and Raman spectroscopy for the prediction of quality traits in PDO cheeses Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3389/fnut.2024.1327301
The aims of this proof of principle study were to compare two different chemometric approaches using a Bayesian method, Partial Least Square (PLS) and PLS-discriminant analysis (DA), for the prediction of the chemical composition and texture properties of the Grana Padano (GP) and Parmigiano Reggiano (PR) PDO cheeses by using NIR and Raman spectra and quantify their ability to distinguish between the two PDO and among their ripening periods. For each dairy chain consortium, 9 cheese samples from 3 dairy industries were collected for a total of 18 cheese samples. Three seasoning times were chosen for each dairy industry: 12, 20, and 36 months for GP and 12, 24, and 36 months for PR. A portable NIR instrument (spectral range: 950–1,650 nm) was used on 3 selected spots on the paste of each cheese sample, for a total of 54 spectra collected. An Alpha300 R confocal Raman microscope was used to collect 10 individual spectra for each cheese sample in each spot for a total of 540 Raman spectra collected. After the detection of eventual outliers, the spectra were also concatenated together (NIR + Raman). All the cheese samples were assessed in terms of chemical composition and texture properties following the official reference methods. A Bayesian approach and PLS-DA were applied to the NIR, Raman, and fused spectra to predict the PDO type and seasoning time. The PLS-DA reached the best performances, with 100% correctly identified PDO type using Raman only. The fusion of the data improved the results in 60% of the cases with the Bayesian and of 40% with the PLS-DA approach. A Bayesian approach and a PLS procedure were applied to the NIR, Raman, and fused spectra to predict the chemical composition of the cheese samples and their texture properties. In this case, the best performance in validation was reached with the Bayesian method on Raman spectra for fat (R2VAL = 0.74). The fusion of the data was not always helpful in improving the prediction accuracy. Given the limitations associated with our sample set, future studies will expand the sample size and incorporate diverse PDO cheeses.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fnut.2024.1327301
- https://www.frontiersin.org/articles/10.3389/fnut.2024.1327301/pdf?isPublishedV2=False
- OA Status
- gold
- Cited By
- 6
- References
- 51
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391573019
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391573019Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fnut.2024.1327301Digital Object Identifier
- Title
-
Exploring the use of NIR and Raman spectroscopy for the prediction of quality traits in PDO cheesesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-06Full publication date if available
- Authors
-
Giorgia Stocco, Laura G. Gómez‐Mascaraque, Gaurav Kr Deshwal, Jordi Cruz, Arnaud Molle, Valentina Pizzamiglio, Paolo Berzaghi, Georgi Gergov, Claudio Cipolat‐GotetList of authors in order
- Landing page
-
https://doi.org/10.3389/fnut.2024.1327301Publisher landing page
- PDF URL
-
https://www.frontiersin.org/articles/10.3389/fnut.2024.1327301/pdf?isPublishedV2=FalseDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.frontiersin.org/articles/10.3389/fnut.2024.1327301/pdf?isPublishedV2=FalseDirect OA link when available
- Concepts
-
Raman spectroscopy, Analytical Chemistry (journal), Linear discriminant analysis, Partial least squares regression, Chemometrics, Food science, Near-infrared spectroscopy, Texture (cosmology), Chemistry, Pattern recognition (psychology), Mathematics, Artificial intelligence, Chromatography, Statistics, Computer science, Optics, Physics, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
51Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391573019 |
|---|---|
| doi | https://doi.org/10.3389/fnut.2024.1327301 |
| ids.doi | https://doi.org/10.3389/fnut.2024.1327301 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38379551 |
| ids.openalex | https://openalex.org/W4391573019 |
| fwci | 2.67363857 |
| type | article |
| title | Exploring the use of NIR and Raman spectroscopy for the prediction of quality traits in PDO cheeses |
| biblio.issue | |
| biblio.volume | 11 |
| biblio.last_page | 1327301 |
| biblio.first_page | 1327301 |
| topics[0].id | https://openalex.org/T10640 |
| topics[0].field.id | https://openalex.org/fields/16 |
| topics[0].field.display_name | Chemistry |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1602 |
| topics[0].subfield.display_name | Analytical Chemistry |
| topics[0].display_name | Spectroscopy and Chemometric Analyses |
| topics[1].id | https://openalex.org/T10333 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9990000128746033 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1103 |
| topics[1].subfield.display_name | Animal Science and Zoology |
| topics[1].display_name | Meat and Animal Product Quality |
| topics[2].id | https://openalex.org/T12388 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9940999746322632 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Identification and Quantification in Food |
| is_xpac | False |
| apc_list.value | 2490 |
| apc_list.currency | USD |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2490 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C40003534 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7767360806465149 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q862228 |
| concepts[0].display_name | Raman spectroscopy |
| concepts[1].id | https://openalex.org/C113196181 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5244391560554504 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q485223 |
| concepts[1].display_name | Analytical Chemistry (journal) |
| concepts[2].id | https://openalex.org/C69738355 |
| concepts[2].level | 2 |
| concepts[2].score | 0.49637848138809204 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1228929 |
| concepts[2].display_name | Linear discriminant analysis |
| concepts[3].id | https://openalex.org/C22354355 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4485536515712738 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q422009 |
| concepts[3].display_name | Partial least squares regression |
| concepts[4].id | https://openalex.org/C151304367 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4444705843925476 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q910067 |
| concepts[4].display_name | Chemometrics |
| concepts[5].id | https://openalex.org/C31903555 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4425998032093048 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1637030 |
| concepts[5].display_name | Food science |
| concepts[6].id | https://openalex.org/C43571822 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42349088191986084 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q599037 |
| concepts[6].display_name | Near-infrared spectroscopy |
| concepts[7].id | https://openalex.org/C2781195486 |
| concepts[7].level | 3 |
| concepts[7].score | 0.41834020614624023 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q289436 |
| concepts[7].display_name | Texture (cosmology) |
| concepts[8].id | https://openalex.org/C185592680 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3938225209712982 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[8].display_name | Chemistry |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.382286012172699 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3390103578567505 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.266981840133667 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C43617362 |
| concepts[12].level | 1 |
| concepts[12].score | 0.21647056937217712 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[12].display_name | Chromatography |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.17485743761062622 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C41008148 |
| concepts[14].level | 0 |
| concepts[14].score | 0.12579810619354248 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[14].display_name | Computer science |
| concepts[15].id | https://openalex.org/C120665830 |
| concepts[15].level | 1 |
| concepts[15].score | 0.07715967297554016 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[15].display_name | Optics |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C115961682 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[17].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/raman-spectroscopy |
| keywords[0].score | 0.7767360806465149 |
| keywords[0].display_name | Raman spectroscopy |
| keywords[1].id | https://openalex.org/keywords/analytical-chemistry |
| keywords[1].score | 0.5244391560554504 |
| keywords[1].display_name | Analytical Chemistry (journal) |
| keywords[2].id | https://openalex.org/keywords/linear-discriminant-analysis |
| keywords[2].score | 0.49637848138809204 |
| keywords[2].display_name | Linear discriminant analysis |
| keywords[3].id | https://openalex.org/keywords/partial-least-squares-regression |
| keywords[3].score | 0.4485536515712738 |
| keywords[3].display_name | Partial least squares regression |
| keywords[4].id | https://openalex.org/keywords/chemometrics |
| keywords[4].score | 0.4444705843925476 |
| keywords[4].display_name | Chemometrics |
| keywords[5].id | https://openalex.org/keywords/food-science |
| keywords[5].score | 0.4425998032093048 |
| keywords[5].display_name | Food science |
| keywords[6].id | https://openalex.org/keywords/near-infrared-spectroscopy |
| keywords[6].score | 0.42349088191986084 |
| keywords[6].display_name | Near-infrared spectroscopy |
| keywords[7].id | https://openalex.org/keywords/texture |
| keywords[7].score | 0.41834020614624023 |
| keywords[7].display_name | Texture (cosmology) |
| keywords[8].id | https://openalex.org/keywords/chemistry |
| keywords[8].score | 0.3938225209712982 |
| keywords[8].display_name | Chemistry |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.382286012172699 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.3390103578567505 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.266981840133667 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/chromatography |
| keywords[12].score | 0.21647056937217712 |
| keywords[12].display_name | Chromatography |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.17485743761062622 |
| keywords[13].display_name | Statistics |
| keywords[14].id | https://openalex.org/keywords/computer-science |
| keywords[14].score | 0.12579810619354248 |
| keywords[14].display_name | Computer science |
| keywords[15].id | https://openalex.org/keywords/optics |
| keywords[15].score | 0.07715967297554016 |
| keywords[15].display_name | Optics |
| language | en |
| locations[0].id | doi:10.3389/fnut.2024.1327301 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2596909297 |
| locations[0].source.issn | 2296-861X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2296-861X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Nutrition |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.frontiersin.org/articles/10.3389/fnut.2024.1327301/pdf?isPublishedV2=False |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Nutrition |
| locations[0].landing_page_url | https://doi.org/10.3389/fnut.2024.1327301 |
| locations[1].id | pmid:38379551 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Frontiers in nutrition |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38379551 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10876835 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10876835/pdf/fnut-11-1327301.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Front Nutr |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10876835 |
| locations[3].id | pmh:oai:doaj.org/article:268527eaca99427799787f8d10e59cc6 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Frontiers in Nutrition, Vol 11 (2024) |
| locations[3].landing_page_url | https://doaj.org/article/268527eaca99427799787f8d10e59cc6 |
| locations[4].id | pmh:oai:www.research.unipd.it:11577/3508405 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306402448 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | Padua Research Archive (University of Padua) |
| locations[4].source.host_organization | https://openalex.org/I138689650 |
| locations[4].source.host_organization_name | University of Padua |
| locations[4].source.host_organization_lineage | https://openalex.org/I138689650 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | info:eu-repo/semantics/article |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | https://hdl.handle.net/11577/3508405 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5004033020 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6786-9806 |
| authorships[0].author.display_name | Giorgia Stocco |
| authorships[0].countries | IT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I124601658 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Veterinary Science, University of Parma, Parma, Italy |
| authorships[0].institutions[0].id | https://openalex.org/I124601658 |
| authorships[0].institutions[0].ror | https://ror.org/02k7wn190 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I124601658 |
| authorships[0].institutions[0].country_code | IT |
| authorships[0].institutions[0].display_name | University of Parma |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Giorgia Stocco |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Veterinary Science, University of Parma, Parma, Italy |
| authorships[1].author.id | https://openalex.org/A5065663735 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3953-3942 |
| authorships[1].author.display_name | Laura G. Gómez‐Mascaraque |
| authorships[1].countries | IE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I141766778 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Food Chemistry and Technology, Teagasc Food Research Centre Moorepark, Fermoy, Ireland |
| authorships[1].institutions[0].id | https://openalex.org/I141766778 |
| authorships[1].institutions[0].ror | https://ror.org/03sx84n71 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I141766778 |
| authorships[1].institutions[0].country_code | IE |
| authorships[1].institutions[0].display_name | Teagasc - The Irish Agriculture and Food Development Authority |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Laura G. Gómez-Mascaraque |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Food Chemistry and Technology, Teagasc Food Research Centre Moorepark, Fermoy, Ireland |
| authorships[2].author.id | https://openalex.org/A5053877245 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3422-6369 |
| authorships[2].author.display_name | Gaurav Kr Deshwal |
| authorships[2].countries | IE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I141766778 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Food Chemistry and Technology, Teagasc Food Research Centre Moorepark, Fermoy, Ireland |
| authorships[2].institutions[0].id | https://openalex.org/I141766778 |
| authorships[2].institutions[0].ror | https://ror.org/03sx84n71 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I141766778 |
| authorships[2].institutions[0].country_code | IE |
| authorships[2].institutions[0].display_name | Teagasc - The Irish Agriculture and Food Development Authority |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Gaurav Kr Deshwal |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Food Chemistry and Technology, Teagasc Food Research Centre Moorepark, Fermoy, Ireland |
| authorships[3].author.id | https://openalex.org/A5013612299 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8191-8689 |
| authorships[3].author.display_name | Jordi Cruz |
| authorships[3].countries | ES |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210108266 |
| authorships[3].affiliations[0].raw_affiliation_string | Escola Universitària Salesiana de Sarrià, Barcelona, Spain |
| authorships[3].institutions[0].id | https://openalex.org/I4210108266 |
| authorships[3].institutions[0].ror | https://ror.org/01fq24p11 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I170486558, https://openalex.org/I4210108266 |
| authorships[3].institutions[0].country_code | ES |
| authorships[3].institutions[0].display_name | Elisava Barcelona School of Design and Engineering |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jordi Cruz Sanchez |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Escola Universitària Salesiana de Sarrià, Barcelona, Spain |
| authorships[4].author.id | https://openalex.org/A5055830230 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7232-6454 |
| authorships[4].author.display_name | Arnaud Molle |
| authorships[4].countries | IT |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I124601658 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Veterinary Science, University of Parma, Parma, Italy |
| authorships[4].institutions[0].id | https://openalex.org/I124601658 |
| authorships[4].institutions[0].ror | https://ror.org/02k7wn190 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I124601658 |
| authorships[4].institutions[0].country_code | IT |
| authorships[4].institutions[0].display_name | University of Parma |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Arnaud Molle |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Veterinary Science, University of Parma, Parma, Italy |
| authorships[5].author.id | https://openalex.org/A5062119668 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Valentina Pizzamiglio |
| authorships[5].countries | IT |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210122533 |
| authorships[5].affiliations[0].raw_affiliation_string | Consorzio del Formaggio Parmigiano Reggiano, Reggio Emilia, Italy |
| authorships[5].institutions[0].id | https://openalex.org/I4210122533 |
| authorships[5].institutions[0].ror | https://ror.org/02nv12n94 |
| authorships[5].institutions[0].type | other |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210122533 |
| authorships[5].institutions[0].country_code | IT |
| authorships[5].institutions[0].display_name | Consorzio del Formaggio Parmigiano-Reggiano |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Valentina Pizzamiglio |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Consorzio del Formaggio Parmigiano Reggiano, Reggio Emilia, Italy |
| authorships[6].author.id | https://openalex.org/A5014037617 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7791-2751 |
| authorships[6].author.display_name | Paolo Berzaghi |
| authorships[6].countries | IT |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I138689650 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Animal Medicine, Production and Health, University of Padova, Padova, Italy |
| authorships[6].institutions[0].id | https://openalex.org/I138689650 |
| authorships[6].institutions[0].ror | https://ror.org/00240q980 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I138689650 |
| authorships[6].institutions[0].country_code | IT |
| authorships[6].institutions[0].display_name | University of Padua |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Paolo Berzaghi |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Animal Medicine, Production and Health, University of Padova, Padova, Italy |
| authorships[7].author.id | https://openalex.org/A5063439432 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-1623-7753 |
| authorships[7].author.display_name | Georgi Gergov |
| authorships[7].countries | BG |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I24768866, https://openalex.org/I4210147669 |
| authorships[7].affiliations[0].raw_affiliation_string | Institute of Chemical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria |
| authorships[7].institutions[0].id | https://openalex.org/I24768866 |
| authorships[7].institutions[0].ror | https://ror.org/01x8hew03 |
| authorships[7].institutions[0].type | government |
| authorships[7].institutions[0].lineage | https://openalex.org/I24768866 |
| authorships[7].institutions[0].country_code | BG |
| authorships[7].institutions[0].display_name | Bulgarian Academy of Sciences |
| authorships[7].institutions[1].id | https://openalex.org/I4210147669 |
| authorships[7].institutions[1].ror | https://ror.org/049sbzn78 |
| authorships[7].institutions[1].type | facility |
| authorships[7].institutions[1].lineage | https://openalex.org/I24768866, https://openalex.org/I4210147669 |
| authorships[7].institutions[1].country_code | BG |
| authorships[7].institutions[1].display_name | Institute of Chemical Engineering |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Georgi Gergov |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Institute of Chemical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria |
| authorships[8].author.id | https://openalex.org/A5027708204 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-2318-4231 |
| authorships[8].author.display_name | Claudio Cipolat‐Gotet |
| authorships[8].countries | IT |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I124601658 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Veterinary Science, University of Parma, Parma, Italy |
| authorships[8].institutions[0].id | https://openalex.org/I124601658 |
| authorships[8].institutions[0].ror | https://ror.org/02k7wn190 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I124601658 |
| authorships[8].institutions[0].country_code | IT |
| authorships[8].institutions[0].display_name | University of Parma |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Claudio Cipolat-Gotet |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Veterinary Science, University of Parma, Parma, Italy |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.frontiersin.org/articles/10.3389/fnut.2024.1327301/pdf?isPublishedV2=False |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Exploring the use of NIR and Raman spectroscopy for the prediction of quality traits in PDO cheeses |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10640 |
| primary_topic.field.id | https://openalex.org/fields/16 |
| primary_topic.field.display_name | Chemistry |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1602 |
| primary_topic.subfield.display_name | Analytical Chemistry |
| primary_topic.display_name | Spectroscopy and Chemometric Analyses |
| related_works | https://openalex.org/W2043468524, https://openalex.org/W2793365604, https://openalex.org/W3135916123, https://openalex.org/W2037752115, https://openalex.org/W2589728448, https://openalex.org/W2046744435, https://openalex.org/W3158648238, https://openalex.org/W3115262167, https://openalex.org/W3132103859, https://openalex.org/W2085256839 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3389/fnut.2024.1327301 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2596909297 |
| best_oa_location.source.issn | 2296-861X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2296-861X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Nutrition |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fnut.2024.1327301/pdf?isPublishedV2=False |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Nutrition |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fnut.2024.1327301 |
| primary_location.id | doi:10.3389/fnut.2024.1327301 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2596909297 |
| primary_location.source.issn | 2296-861X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2296-861X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Nutrition |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fnut.2024.1327301/pdf?isPublishedV2=False |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Nutrition |
| primary_location.landing_page_url | https://doi.org/10.3389/fnut.2024.1327301 |
| publication_date | 2024-02-06 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2035797333, https://openalex.org/W4206264265, https://openalex.org/W2046697733, https://openalex.org/W1942214850, https://openalex.org/W3011802237, https://openalex.org/W2093591347, https://openalex.org/W2009767240, https://openalex.org/W4280631829, https://openalex.org/W3047643928, https://openalex.org/W1998002913, https://openalex.org/W1456054653, https://openalex.org/W1969299627, https://openalex.org/W2073503722, https://openalex.org/W1863123105, https://openalex.org/W4317527610, https://openalex.org/W1595519652, https://openalex.org/W2071325350, https://openalex.org/W3213576678, https://openalex.org/W1970149620, https://openalex.org/W2017422910, https://openalex.org/W2016090370, https://openalex.org/W2109606373, https://openalex.org/W2466429515, https://openalex.org/W2008533057, https://openalex.org/W2021337450, https://openalex.org/W2435349083, https://openalex.org/W4206724175, https://openalex.org/W2022759028, https://openalex.org/W2005726034, https://openalex.org/W3095796466, https://openalex.org/W4317623237, https://openalex.org/W2479735871, https://openalex.org/W3096796439, https://openalex.org/W2943326749, https://openalex.org/W3047071846, https://openalex.org/W2090794754, https://openalex.org/W2090816911, https://openalex.org/W2046270418, https://openalex.org/W4321373196, https://openalex.org/W3211281145, https://openalex.org/W1974523379, https://openalex.org/W2936391122, https://openalex.org/W1581201881, https://openalex.org/W4323535475, https://openalex.org/W3080646488, https://openalex.org/W4324283417, https://openalex.org/W1997207432, https://openalex.org/W4315497893, https://openalex.org/W3173282333, https://openalex.org/W2133297572, https://openalex.org/W2319694209 |
| referenced_works_count | 51 |
| abstract_inverted_index.+ | 183 |
| abstract_inverted_index.3 | 78, 125 |
| abstract_inverted_index.9 | 74 |
| abstract_inverted_index.= | 313 |
| abstract_inverted_index.A | 114, 204, 264 |
| abstract_inverted_index.R | 144 |
| abstract_inverted_index.a | 16, 84, 136, 163, 268 |
| abstract_inverted_index.10 | 152 |
| abstract_inverted_index.18 | 87 |
| abstract_inverted_index.36 | 102, 110 |
| abstract_inverted_index.54 | 139 |
| abstract_inverted_index.An | 142 |
| abstract_inverted_index.GP | 105 |
| abstract_inverted_index.In | 293 |
| abstract_inverted_index.by | 48 |
| abstract_inverted_index.in | 159, 191, 249, 299, 324 |
| abstract_inverted_index.of | 2, 5, 30, 37, 86, 131, 138, 165, 173, 193, 243, 251, 258, 285, 317 |
| abstract_inverted_index.on | 124, 128, 307 |
| abstract_inverted_index.to | 9, 58, 150, 211, 218, 273, 280 |
| abstract_inverted_index.12, | 99, 107 |
| abstract_inverted_index.20, | 100 |
| abstract_inverted_index.24, | 108 |
| abstract_inverted_index.40% | 259 |
| abstract_inverted_index.540 | 166 |
| abstract_inverted_index.60% | 250 |
| abstract_inverted_index.All | 185 |
| abstract_inverted_index.For | 69 |
| abstract_inverted_index.NIR | 50, 116 |
| abstract_inverted_index.PDO | 46, 63, 221, 236, 347 |
| abstract_inverted_index.PLS | 269 |
| abstract_inverted_index.PR. | 113 |
| abstract_inverted_index.The | 0, 226, 241, 315 |
| abstract_inverted_index.and | 23, 34, 42, 51, 54, 64, 101, 106, 109, 196, 207, 215, 223, 257, 267, 277, 289, 344 |
| abstract_inverted_index.fat | 311 |
| abstract_inverted_index.for | 27, 83, 95, 104, 112, 135, 155, 162, 310 |
| abstract_inverted_index.nm) | 121 |
| abstract_inverted_index.not | 321 |
| abstract_inverted_index.our | 334 |
| abstract_inverted_index.the | 28, 31, 38, 61, 129, 171, 176, 186, 200, 212, 220, 229, 244, 247, 252, 255, 261, 274, 282, 286, 296, 304, 318, 326, 330, 341 |
| abstract_inverted_index.two | 11, 62 |
| abstract_inverted_index.was | 122, 148, 301, 320 |
| abstract_inverted_index.(GP) | 41 |
| abstract_inverted_index.(NIR | 182 |
| abstract_inverted_index.(PR) | 45 |
| abstract_inverted_index.100% | 233 |
| abstract_inverted_index.NIR, | 213, 275 |
| abstract_inverted_index.aims | 1 |
| abstract_inverted_index.also | 179 |
| abstract_inverted_index.best | 230, 297 |
| abstract_inverted_index.data | 245, 319 |
| abstract_inverted_index.each | 70, 96, 132, 156, 160 |
| abstract_inverted_index.from | 77 |
| abstract_inverted_index.set, | 336 |
| abstract_inverted_index.size | 343 |
| abstract_inverted_index.spot | 161 |
| abstract_inverted_index.this | 3, 294 |
| abstract_inverted_index.type | 222, 237 |
| abstract_inverted_index.used | 123, 149 |
| abstract_inverted_index.were | 8, 81, 93, 178, 189, 209, 271 |
| abstract_inverted_index.will | 339 |
| abstract_inverted_index.with | 232, 254, 260, 303, 333 |
| abstract_inverted_index.(DA), | 26 |
| abstract_inverted_index.(PLS) | 22 |
| abstract_inverted_index.After | 170 |
| abstract_inverted_index.Given | 329 |
| abstract_inverted_index.Grana | 39 |
| abstract_inverted_index.Least | 20 |
| abstract_inverted_index.Raman | 52, 146, 167, 239, 308 |
| abstract_inverted_index.Three | 90 |
| abstract_inverted_index.among | 65 |
| abstract_inverted_index.case, | 295 |
| abstract_inverted_index.cases | 253 |
| abstract_inverted_index.chain | 72 |
| abstract_inverted_index.dairy | 71, 79, 97 |
| abstract_inverted_index.fused | 216, 278 |
| abstract_inverted_index.only. | 240 |
| abstract_inverted_index.paste | 130 |
| abstract_inverted_index.proof | 4 |
| abstract_inverted_index.spots | 127 |
| abstract_inverted_index.study | 7 |
| abstract_inverted_index.terms | 192 |
| abstract_inverted_index.their | 56, 66, 290 |
| abstract_inverted_index.time. | 225 |
| abstract_inverted_index.times | 92 |
| abstract_inverted_index.total | 85, 137, 164 |
| abstract_inverted_index.using | 15, 49, 238 |
| abstract_inverted_index.(R2VAL | 312 |
| abstract_inverted_index.0.74). | 314 |
| abstract_inverted_index.PLS-DA | 208, 227, 262 |
| abstract_inverted_index.Padano | 40 |
| abstract_inverted_index.Raman, | 214, 276 |
| abstract_inverted_index.Square | 21 |
| abstract_inverted_index.always | 322 |
| abstract_inverted_index.cheese | 75, 88, 133, 157, 187, 287 |
| abstract_inverted_index.chosen | 94 |
| abstract_inverted_index.expand | 340 |
| abstract_inverted_index.fusion | 242, 316 |
| abstract_inverted_index.future | 337 |
| abstract_inverted_index.method | 306 |
| abstract_inverted_index.months | 103, 111 |
| abstract_inverted_index.range: | 119 |
| abstract_inverted_index.sample | 158, 335, 342 |
| abstract_inverted_index.Partial | 19 |
| abstract_inverted_index.Raman). | 184 |
| abstract_inverted_index.ability | 57 |
| abstract_inverted_index.applied | 210, 272 |
| abstract_inverted_index.between | 60 |
| abstract_inverted_index.cheeses | 47 |
| abstract_inverted_index.collect | 151 |
| abstract_inverted_index.compare | 10 |
| abstract_inverted_index.diverse | 346 |
| abstract_inverted_index.helpful | 323 |
| abstract_inverted_index.method, | 18 |
| abstract_inverted_index.predict | 219, 281 |
| abstract_inverted_index.reached | 228, 302 |
| abstract_inverted_index.results | 248 |
| abstract_inverted_index.sample, | 134 |
| abstract_inverted_index.samples | 76, 188, 288 |
| abstract_inverted_index.spectra | 53, 140, 154, 168, 177, 217, 279, 309 |
| abstract_inverted_index.studies | 338 |
| abstract_inverted_index.texture | 35, 197, 291 |
| abstract_inverted_index.Alpha300 | 143 |
| abstract_inverted_index.Bayesian | 17, 205, 256, 265, 305 |
| abstract_inverted_index.Reggiano | 44 |
| abstract_inverted_index.analysis | 25 |
| abstract_inverted_index.approach | 206, 266 |
| abstract_inverted_index.assessed | 190 |
| abstract_inverted_index.cheeses. | 348 |
| abstract_inverted_index.chemical | 32, 194, 283 |
| abstract_inverted_index.confocal | 145 |
| abstract_inverted_index.eventual | 174 |
| abstract_inverted_index.improved | 246 |
| abstract_inverted_index.methods. | 203 |
| abstract_inverted_index.official | 201 |
| abstract_inverted_index.periods. | 68 |
| abstract_inverted_index.portable | 115 |
| abstract_inverted_index.quantify | 55 |
| abstract_inverted_index.ripening | 67 |
| abstract_inverted_index.samples. | 89 |
| abstract_inverted_index.selected | 126 |
| abstract_inverted_index.together | 181 |
| abstract_inverted_index.(spectral | 118 |
| abstract_inverted_index.accuracy. | 328 |
| abstract_inverted_index.approach. | 263 |
| abstract_inverted_index.collected | 82 |
| abstract_inverted_index.correctly | 234 |
| abstract_inverted_index.detection | 172 |
| abstract_inverted_index.different | 12 |
| abstract_inverted_index.following | 199 |
| abstract_inverted_index.improving | 325 |
| abstract_inverted_index.industry: | 98 |
| abstract_inverted_index.outliers, | 175 |
| abstract_inverted_index.principle | 6 |
| abstract_inverted_index.procedure | 270 |
| abstract_inverted_index.reference | 202 |
| abstract_inverted_index.seasoning | 91, 224 |
| abstract_inverted_index.Parmigiano | 43 |
| abstract_inverted_index.approaches | 14 |
| abstract_inverted_index.associated | 332 |
| abstract_inverted_index.collected. | 141, 169 |
| abstract_inverted_index.identified | 235 |
| abstract_inverted_index.individual | 153 |
| abstract_inverted_index.industries | 80 |
| abstract_inverted_index.instrument | 117 |
| abstract_inverted_index.microscope | 147 |
| abstract_inverted_index.prediction | 29, 327 |
| abstract_inverted_index.properties | 36, 198 |
| abstract_inverted_index.validation | 300 |
| abstract_inverted_index.950–1,650 | 120 |
| abstract_inverted_index.chemometric | 13 |
| abstract_inverted_index.composition | 33, 195, 284 |
| abstract_inverted_index.consortium, | 73 |
| abstract_inverted_index.distinguish | 59 |
| abstract_inverted_index.incorporate | 345 |
| abstract_inverted_index.limitations | 331 |
| abstract_inverted_index.performance | 298 |
| abstract_inverted_index.properties. | 292 |
| abstract_inverted_index.concatenated | 180 |
| abstract_inverted_index.performances, | 231 |
| abstract_inverted_index.PLS-discriminant | 24 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5004033020 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 9 |
| corresponding_institution_ids | https://openalex.org/I124601658 |
| citation_normalized_percentile.value | 0.83191489 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |