Exploring the Vulnerabilities of Machine Learning and Quantum Machine Learning to Adversarial Attacks using a Malware Dataset: A Comparative Analysis Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2305.19593
The burgeoning fields of machine learning (ML) and quantum machine learning (QML) have shown remarkable potential in tackling complex problems across various domains. However, their susceptibility to adversarial attacks raises concerns when deploying these systems in security sensitive applications. In this study, we present a comparative analysis of the vulnerability of ML and QML models, specifically conventional neural networks (NN) and quantum neural networks (QNN), to adversarial attacks using a malware dataset. We utilize a software supply chain attack dataset known as ClaMP and develop two distinct models for QNN and NN, employing Pennylane for quantum implementations and TensorFlow and Keras for traditional implementations. Our methodology involves crafting adversarial samples by introducing random noise to a small portion of the dataset and evaluating the impact on the models performance using accuracy, precision, recall, and F1 score metrics. Based on our observations, both ML and QML models exhibit vulnerability to adversarial attacks. While the QNNs accuracy decreases more significantly compared to the NN after the attack, it demonstrates better performance in terms of precision and recall, indicating higher resilience in detecting true positives under adversarial conditions. We also find that adversarial samples crafted for one model type can impair the performance of the other, highlighting the need for robust defense mechanisms. Our study serves as a foundation for future research focused on enhancing the security and resilience of ML and QML models, particularly QNN, given its recent advancements. A more extensive range of experiments will be conducted to better understand the performance and robustness of both models in the face of adversarial attacks.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2305.19593
- https://arxiv.org/pdf/2305.19593
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4379052715
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4379052715Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2305.19593Digital Object Identifier
- Title
-
Exploring the Vulnerabilities of Machine Learning and Quantum Machine Learning to Adversarial Attacks using a Malware Dataset: A Comparative AnalysisWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-31Full publication date if available
- Authors
-
Mst Shapna Akter, Hossain Shahriar, Iysa Iqbal, M. Belal Hossain, M. A. Karim, Victor Clincy, Razvan VoicuList of authors in order
- Landing page
-
https://arxiv.org/abs/2305.19593Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2305.19593Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2305.19593Direct OA link when available
- Concepts
-
Computer science, Adversarial system, Artificial intelligence, Implementation, Machine learning, Robustness (evolution), Malware, Deep learning, Vulnerability (computing), Resilience (materials science), Artificial neural network, False positive paradox, Software, Computer security, Software engineering, Programming language, Chemistry, Physics, Gene, Biochemistry, ThermodynamicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4379052715 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2305.19593 |
| ids.doi | https://doi.org/10.48550/arxiv.2305.19593 |
| ids.openalex | https://openalex.org/W4379052715 |
| fwci | |
| type | preprint |
| title | Exploring the Vulnerabilities of Machine Learning and Quantum Machine Learning to Adversarial Attacks using a Malware Dataset: A Comparative Analysis |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11689 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9927999973297119 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Adversarial Robustness in Machine Learning |
| topics[1].id | https://openalex.org/T11241 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9545999765396118 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Advanced Malware Detection Techniques |
| topics[2].id | https://openalex.org/T11948 |
| topics[2].field.id | https://openalex.org/fields/25 |
| topics[2].field.display_name | Materials Science |
| topics[2].score | 0.9508000016212463 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2505 |
| topics[2].subfield.display_name | Materials Chemistry |
| topics[2].display_name | Machine Learning in Materials Science |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7281057238578796 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C37736160 |
| concepts[1].level | 2 |
| concepts[1].score | 0.655957818031311 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[1].display_name | Adversarial system |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6340430974960327 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C26713055 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6127229332923889 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q245962 |
| concepts[3].display_name | Implementation |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6104589104652405 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C63479239 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5646649599075317 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[5].display_name | Robustness (evolution) |
| concepts[6].id | https://openalex.org/C541664917 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5268822312355042 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q14001 |
| concepts[6].display_name | Malware |
| concepts[7].id | https://openalex.org/C108583219 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5170884132385254 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[7].display_name | Deep learning |
| concepts[8].id | https://openalex.org/C95713431 |
| concepts[8].level | 2 |
| concepts[8].score | 0.48391062021255493 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q631425 |
| concepts[8].display_name | Vulnerability (computing) |
| concepts[9].id | https://openalex.org/C2779585090 |
| concepts[9].level | 2 |
| concepts[9].score | 0.47610506415367126 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3457762 |
| concepts[9].display_name | Resilience (materials science) |
| concepts[10].id | https://openalex.org/C50644808 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4746211767196655 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[10].display_name | Artificial neural network |
| concepts[11].id | https://openalex.org/C64869954 |
| concepts[11].level | 2 |
| concepts[11].score | 0.43674638867378235 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1859747 |
| concepts[11].display_name | False positive paradox |
| concepts[12].id | https://openalex.org/C2777904410 |
| concepts[12].level | 2 |
| concepts[12].score | 0.42459627985954285 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7397 |
| concepts[12].display_name | Software |
| concepts[13].id | https://openalex.org/C38652104 |
| concepts[13].level | 1 |
| concepts[13].score | 0.26352888345718384 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[13].display_name | Computer security |
| concepts[14].id | https://openalex.org/C115903868 |
| concepts[14].level | 1 |
| concepts[14].score | 0.10545650124549866 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q80993 |
| concepts[14].display_name | Software engineering |
| concepts[15].id | https://openalex.org/C199360897 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[15].display_name | Programming language |
| concepts[16].id | https://openalex.org/C185592680 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[16].display_name | Chemistry |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| concepts[18].id | https://openalex.org/C104317684 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[18].display_name | Gene |
| concepts[19].id | https://openalex.org/C55493867 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[19].display_name | Biochemistry |
| concepts[20].id | https://openalex.org/C97355855 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[20].display_name | Thermodynamics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7281057238578796 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/adversarial-system |
| keywords[1].score | 0.655957818031311 |
| keywords[1].display_name | Adversarial system |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6340430974960327 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/implementation |
| keywords[3].score | 0.6127229332923889 |
| keywords[3].display_name | Implementation |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.6104589104652405 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/robustness |
| keywords[5].score | 0.5646649599075317 |
| keywords[5].display_name | Robustness (evolution) |
| keywords[6].id | https://openalex.org/keywords/malware |
| keywords[6].score | 0.5268822312355042 |
| keywords[6].display_name | Malware |
| keywords[7].id | https://openalex.org/keywords/deep-learning |
| keywords[7].score | 0.5170884132385254 |
| keywords[7].display_name | Deep learning |
| keywords[8].id | https://openalex.org/keywords/vulnerability |
| keywords[8].score | 0.48391062021255493 |
| keywords[8].display_name | Vulnerability (computing) |
| keywords[9].id | https://openalex.org/keywords/resilience |
| keywords[9].score | 0.47610506415367126 |
| keywords[9].display_name | Resilience (materials science) |
| keywords[10].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[10].score | 0.4746211767196655 |
| keywords[10].display_name | Artificial neural network |
| keywords[11].id | https://openalex.org/keywords/false-positive-paradox |
| keywords[11].score | 0.43674638867378235 |
| keywords[11].display_name | False positive paradox |
| keywords[12].id | https://openalex.org/keywords/software |
| keywords[12].score | 0.42459627985954285 |
| keywords[12].display_name | Software |
| keywords[13].id | https://openalex.org/keywords/computer-security |
| keywords[13].score | 0.26352888345718384 |
| keywords[13].display_name | Computer security |
| keywords[14].id | https://openalex.org/keywords/software-engineering |
| keywords[14].score | 0.10545650124549866 |
| keywords[14].display_name | Software engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2305.19593 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2305.19593 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2305.19593 |
| locations[1].id | doi:10.48550/arxiv.2305.19593 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2305.19593 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5015055011 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9859-6265 |
| authorships[0].author.display_name | Mst Shapna Akter |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Akter, Mst Shapna |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5052820694 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1021-7986 |
| authorships[1].author.display_name | Hossain Shahriar |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shahriar, Hossain |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5110984400 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Iysa Iqbal |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Iqbal, Iysa |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5050678130 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4733-0018 |
| authorships[3].author.display_name | M. Belal Hossain |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hossain, MD |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5040142447 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | M. A. Karim |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Karim, M. A. |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5111391312 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Victor Clincy |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Clincy, Victor |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5114152602 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Razvan Voicu |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Voicu, Razvan |
| authorships[6].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2305.19593 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Exploring the Vulnerabilities of Machine Learning and Quantum Machine Learning to Adversarial Attacks using a Malware Dataset: A Comparative Analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11689 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9927999973297119 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Adversarial Robustness in Machine Learning |
| related_works | https://openalex.org/W2502115930, https://openalex.org/W2482350142, https://openalex.org/W4246396837, https://openalex.org/W3126451824, https://openalex.org/W1561927205, https://openalex.org/W3191453585, https://openalex.org/W4297672492, https://openalex.org/W4310988119, https://openalex.org/W4285226279, https://openalex.org/W1975357770 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2305.19593 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2305.19593 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2305.19593 |
| primary_location.id | pmh:oai:arXiv.org:2305.19593 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2305.19593 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2305.19593 |
| publication_date | 2023-05-31 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 237 |
| abstract_inverted_index.a | 44, 69, 74, 115, 214 |
| abstract_inverted_index.F1 | 134 |
| abstract_inverted_index.In | 39 |
| abstract_inverted_index.ML | 51, 142, 227 |
| abstract_inverted_index.NN | 161 |
| abstract_inverted_index.We | 72, 185 |
| abstract_inverted_index.as | 81, 213 |
| abstract_inverted_index.be | 244 |
| abstract_inverted_index.by | 110 |
| abstract_inverted_index.in | 16, 35, 169, 178, 256 |
| abstract_inverted_index.it | 165 |
| abstract_inverted_index.of | 3, 47, 50, 118, 171, 200, 226, 241, 253, 259 |
| abstract_inverted_index.on | 125, 138, 220 |
| abstract_inverted_index.to | 26, 65, 114, 148, 159, 246 |
| abstract_inverted_index.we | 42 |
| abstract_inverted_index.NN, | 91 |
| abstract_inverted_index.Our | 104, 210 |
| abstract_inverted_index.QML | 53, 144, 229 |
| abstract_inverted_index.QNN | 89 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 7, 52, 60, 83, 90, 97, 99, 121, 133, 143, 173, 224, 228, 251 |
| abstract_inverted_index.can | 196 |
| abstract_inverted_index.for | 88, 94, 101, 192, 206, 216 |
| abstract_inverted_index.its | 234 |
| abstract_inverted_index.one | 193 |
| abstract_inverted_index.our | 139 |
| abstract_inverted_index.the | 48, 119, 123, 126, 152, 160, 163, 198, 201, 204, 222, 249, 257 |
| abstract_inverted_index.two | 85 |
| abstract_inverted_index.(ML) | 6 |
| abstract_inverted_index.(NN) | 59 |
| abstract_inverted_index.QNN, | 232 |
| abstract_inverted_index.QNNs | 153 |
| abstract_inverted_index.also | 186 |
| abstract_inverted_index.both | 141, 254 |
| abstract_inverted_index.face | 258 |
| abstract_inverted_index.find | 187 |
| abstract_inverted_index.have | 12 |
| abstract_inverted_index.more | 156, 238 |
| abstract_inverted_index.need | 205 |
| abstract_inverted_index.that | 188 |
| abstract_inverted_index.this | 40 |
| abstract_inverted_index.true | 180 |
| abstract_inverted_index.type | 195 |
| abstract_inverted_index.when | 31 |
| abstract_inverted_index.will | 243 |
| abstract_inverted_index.(QML) | 11 |
| abstract_inverted_index.Based | 137 |
| abstract_inverted_index.ClaMP | 82 |
| abstract_inverted_index.Keras | 100 |
| abstract_inverted_index.While | 151 |
| abstract_inverted_index.after | 162 |
| abstract_inverted_index.chain | 77 |
| abstract_inverted_index.given | 233 |
| abstract_inverted_index.known | 80 |
| abstract_inverted_index.model | 194 |
| abstract_inverted_index.noise | 113 |
| abstract_inverted_index.range | 240 |
| abstract_inverted_index.score | 135 |
| abstract_inverted_index.shown | 13 |
| abstract_inverted_index.small | 116 |
| abstract_inverted_index.study | 211 |
| abstract_inverted_index.terms | 170 |
| abstract_inverted_index.their | 24 |
| abstract_inverted_index.these | 33 |
| abstract_inverted_index.under | 182 |
| abstract_inverted_index.using | 68, 129 |
| abstract_inverted_index.(QNN), | 64 |
| abstract_inverted_index.across | 20 |
| abstract_inverted_index.attack | 78 |
| abstract_inverted_index.better | 167, 247 |
| abstract_inverted_index.fields | 2 |
| abstract_inverted_index.future | 217 |
| abstract_inverted_index.higher | 176 |
| abstract_inverted_index.impact | 124 |
| abstract_inverted_index.impair | 197 |
| abstract_inverted_index.models | 87, 127, 145, 255 |
| abstract_inverted_index.neural | 57, 62 |
| abstract_inverted_index.other, | 202 |
| abstract_inverted_index.raises | 29 |
| abstract_inverted_index.random | 112 |
| abstract_inverted_index.recent | 235 |
| abstract_inverted_index.robust | 207 |
| abstract_inverted_index.serves | 212 |
| abstract_inverted_index.study, | 41 |
| abstract_inverted_index.supply | 76 |
| abstract_inverted_index.attack, | 164 |
| abstract_inverted_index.attacks | 28, 67 |
| abstract_inverted_index.complex | 18 |
| abstract_inverted_index.crafted | 191 |
| abstract_inverted_index.dataset | 79, 120 |
| abstract_inverted_index.defense | 208 |
| abstract_inverted_index.develop | 84 |
| abstract_inverted_index.exhibit | 146 |
| abstract_inverted_index.focused | 219 |
| abstract_inverted_index.machine | 4, 9 |
| abstract_inverted_index.malware | 70 |
| abstract_inverted_index.models, | 54, 230 |
| abstract_inverted_index.portion | 117 |
| abstract_inverted_index.present | 43 |
| abstract_inverted_index.quantum | 8, 61, 95 |
| abstract_inverted_index.recall, | 132, 174 |
| abstract_inverted_index.samples | 109, 190 |
| abstract_inverted_index.systems | 34 |
| abstract_inverted_index.utilize | 73 |
| abstract_inverted_index.various | 21 |
| abstract_inverted_index.However, | 23 |
| abstract_inverted_index.accuracy | 154 |
| abstract_inverted_index.analysis | 46 |
| abstract_inverted_index.attacks. | 150, 261 |
| abstract_inverted_index.compared | 158 |
| abstract_inverted_index.concerns | 30 |
| abstract_inverted_index.crafting | 107 |
| abstract_inverted_index.dataset. | 71 |
| abstract_inverted_index.distinct | 86 |
| abstract_inverted_index.domains. | 22 |
| abstract_inverted_index.involves | 106 |
| abstract_inverted_index.learning | 5, 10 |
| abstract_inverted_index.metrics. | 136 |
| abstract_inverted_index.networks | 58, 63 |
| abstract_inverted_index.problems | 19 |
| abstract_inverted_index.research | 218 |
| abstract_inverted_index.security | 36, 223 |
| abstract_inverted_index.software | 75 |
| abstract_inverted_index.tackling | 17 |
| abstract_inverted_index.Pennylane | 93 |
| abstract_inverted_index.accuracy, | 130 |
| abstract_inverted_index.conducted | 245 |
| abstract_inverted_index.decreases | 155 |
| abstract_inverted_index.deploying | 32 |
| abstract_inverted_index.detecting | 179 |
| abstract_inverted_index.employing | 92 |
| abstract_inverted_index.enhancing | 221 |
| abstract_inverted_index.extensive | 239 |
| abstract_inverted_index.positives | 181 |
| abstract_inverted_index.potential | 15 |
| abstract_inverted_index.precision | 172 |
| abstract_inverted_index.sensitive | 37 |
| abstract_inverted_index.TensorFlow | 98 |
| abstract_inverted_index.burgeoning | 1 |
| abstract_inverted_index.evaluating | 122 |
| abstract_inverted_index.foundation | 215 |
| abstract_inverted_index.indicating | 175 |
| abstract_inverted_index.precision, | 131 |
| abstract_inverted_index.remarkable | 14 |
| abstract_inverted_index.resilience | 177, 225 |
| abstract_inverted_index.robustness | 252 |
| abstract_inverted_index.understand | 248 |
| abstract_inverted_index.adversarial | 27, 66, 108, 149, 183, 189, 260 |
| abstract_inverted_index.comparative | 45 |
| abstract_inverted_index.conditions. | 184 |
| abstract_inverted_index.experiments | 242 |
| abstract_inverted_index.introducing | 111 |
| abstract_inverted_index.mechanisms. | 209 |
| abstract_inverted_index.methodology | 105 |
| abstract_inverted_index.performance | 128, 168, 199, 250 |
| abstract_inverted_index.traditional | 102 |
| abstract_inverted_index.conventional | 56 |
| abstract_inverted_index.demonstrates | 166 |
| abstract_inverted_index.highlighting | 203 |
| abstract_inverted_index.particularly | 231 |
| abstract_inverted_index.specifically | 55 |
| abstract_inverted_index.advancements. | 236 |
| abstract_inverted_index.applications. | 38 |
| abstract_inverted_index.observations, | 140 |
| abstract_inverted_index.significantly | 157 |
| abstract_inverted_index.vulnerability | 49, 147 |
| abstract_inverted_index.susceptibility | 25 |
| abstract_inverted_index.implementations | 96 |
| abstract_inverted_index.implementations. | 103 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |