Exponential Distance Transform Maps for Cell Localization Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.36227/techrxiv.22275958.v3
Cell localization is an important area of medical image analysis, which is dedicated to predicting the precise location of cells in an image. The existing localization paradigm is to predict the density map using a Convolutional Neural Networks (CNN) model based on vanilla convolution and then process the density map using a local maximum search strategy to obtain the cell location and number information. However, there are three main problems in this paradigm: 1) CNN models based on vanilla convolution have difficulty in handling large variations in cell color; 2) The density map is difficult to provide accurate cell location information and ideal gradient information, and the information loss is more obvious in dense regions; 3) The post-processing strategy of density maps is susceptible to background noise and mutual interference between negative and positive cells. To tackle the above issues, we have made a comprehensive update of the existing paradigm, which consists of three parts: 1) A multi-scale gradient aggregation module based on difference convolution to effectively mitigate the challenge of large variations in cell color; 2) A new exponential distance transform map that provides accurate cell location information along with ideal gradient information for model learning; 3) A post-processing strategy named cell center localization strategy based on location maps that can significantly improve the localization performance. Extensive experiments on multiple datasets show that our approach can substantially improve cell localization and counting performance, establishing a new baseline for the cell localization task, and thereby increasing the efficiency of computer-aided diagnosis.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.36227/techrxiv.22275958.v3
- OA Status
- gold
- References
- 71
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386461302
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386461302Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.36227/techrxiv.22275958.v3Digital Object Identifier
- Title
-
Exponential Distance Transform Maps for Cell LocalizationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-09-05Full publication date if available
- Authors
-
Bo Li, Jie Chen, Hang Yi, Min Feng, Yongquan Yang, Hong BuList of authors in order
- Landing page
-
https://doi.org/10.36227/techrxiv.22275958.v3Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.36227/techrxiv.22275958.v3Direct OA link when available
- Concepts
-
Convolution (computer science), Computer science, Artificial intelligence, Noise (video), Convolutional neural network, Pattern recognition (psychology), Computer vision, Image (mathematics), Interference (communication), Artificial neural network, Channel (broadcasting), Computer networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
71Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386461302 |
|---|---|
| doi | https://doi.org/10.36227/techrxiv.22275958.v3 |
| ids.doi | https://doi.org/10.36227/techrxiv.22275958.v3 |
| ids.openalex | https://openalex.org/W4386461302 |
| fwci | 0.0 |
| type | preprint |
| title | Exponential Distance Transform Maps for Cell Localization |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12874 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9975000023841858 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Digital Imaging for Blood Diseases |
| topics[1].id | https://openalex.org/T10862 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9972000122070312 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | AI in cancer detection |
| topics[2].id | https://openalex.org/T13114 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9958999752998352 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Image Processing Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C45347329 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6581389904022217 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5166604 |
| concepts[0].display_name | Convolution (computer science) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6460352540016174 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6288270950317383 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C99498987 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5229402780532837 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[3].display_name | Noise (video) |
| concepts[4].id | https://openalex.org/C81363708 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5049100518226624 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[4].display_name | Convolutional neural network |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48978662490844727 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C31972630 |
| concepts[6].level | 1 |
| concepts[6].score | 0.44547465443611145 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[6].display_name | Computer vision |
| concepts[7].id | https://openalex.org/C115961682 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42236945033073425 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[7].display_name | Image (mathematics) |
| concepts[8].id | https://openalex.org/C32022120 |
| concepts[8].level | 3 |
| concepts[8].score | 0.42086803913116455 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q797225 |
| concepts[8].display_name | Interference (communication) |
| concepts[9].id | https://openalex.org/C50644808 |
| concepts[9].level | 2 |
| concepts[9].score | 0.22309857606887817 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[9].display_name | Artificial neural network |
| concepts[10].id | https://openalex.org/C127162648 |
| concepts[10].level | 2 |
| concepts[10].score | 0.18827149271965027 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[10].display_name | Channel (broadcasting) |
| concepts[11].id | https://openalex.org/C31258907 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[11].display_name | Computer network |
| keywords[0].id | https://openalex.org/keywords/convolution |
| keywords[0].score | 0.6581389904022217 |
| keywords[0].display_name | Convolution (computer science) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6460352540016174 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6288270950317383 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/noise |
| keywords[3].score | 0.5229402780532837 |
| keywords[3].display_name | Noise (video) |
| keywords[4].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[4].score | 0.5049100518226624 |
| keywords[4].display_name | Convolutional neural network |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.48978662490844727 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/computer-vision |
| keywords[6].score | 0.44547465443611145 |
| keywords[6].display_name | Computer vision |
| keywords[7].id | https://openalex.org/keywords/image |
| keywords[7].score | 0.42236945033073425 |
| keywords[7].display_name | Image (mathematics) |
| keywords[8].id | https://openalex.org/keywords/interference |
| keywords[8].score | 0.42086803913116455 |
| keywords[8].display_name | Interference (communication) |
| keywords[9].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[9].score | 0.22309857606887817 |
| keywords[9].display_name | Artificial neural network |
| keywords[10].id | https://openalex.org/keywords/channel |
| keywords[10].score | 0.18827149271965027 |
| keywords[10].display_name | Channel (broadcasting) |
| language | en |
| locations[0].id | doi:10.36227/techrxiv.22275958.v3 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.36227/techrxiv.22275958.v3 |
| locations[1].id | pmh:oai:figshare.com:article/22275958 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400572 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| locations[1].source.host_organization | https://openalex.org/I196829312 |
| locations[1].source.host_organization_name | La Trobe University |
| locations[1].source.host_organization_lineage | https://openalex.org/I196829312 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://figshare.com/articles/preprint/Exponential_Distance_Transform_Maps_for_Cell_Localization/22275958 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5114375869 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-4088-1578 |
| authorships[0].author.display_name | Bo Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[0].affiliations[0].raw_affiliation_string | Sichuan University, Chengdu, China |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Pathology and Institute of Clinical Pathology, West China Hospital, |
| authorships[0].institutions[0].id | https://openalex.org/I24185976 |
| authorships[0].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Sichuan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bo Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Pathology and Institute of Clinical Pathology, West China Hospital,, Sichuan University, Chengdu, China |
| authorships[1].author.id | https://openalex.org/A5100782730 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8419-4620 |
| authorships[1].author.display_name | Jie Chen |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[1].affiliations[0].raw_affiliation_string | Sichuan University, Chengdu, China |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Pathology and Institute of Clinical Pathology, West China Hospital, |
| authorships[1].institutions[0].id | https://openalex.org/I24185976 |
| authorships[1].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Sichuan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jie Chen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Pathology and Institute of Clinical Pathology, West China Hospital,, Sichuan University, Chengdu, China |
| authorships[2].author.id | https://openalex.org/A5100741716 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8521-7422 |
| authorships[2].author.display_name | Hang Yi |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[2].affiliations[0].raw_affiliation_string | Sichuan University, Chengdu, China |
| authorships[2].affiliations[1].raw_affiliation_string | Department of Pathology and Institute of Clinical Pathology, West China Hospital, |
| authorships[2].institutions[0].id | https://openalex.org/I24185976 |
| authorships[2].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Sichuan University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hang Yi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Pathology and Institute of Clinical Pathology, West China Hospital,, Sichuan University, Chengdu, China |
| authorships[3].author.id | https://openalex.org/A5101535509 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5376-4408 |
| authorships[3].author.display_name | Min Feng |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Pathology, West China Second University Hospital, Sichuan University & Key Laboratory of Birth Defect and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China. |
| authorships[3].institutions[0].id | https://openalex.org/I24185976 |
| authorships[3].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Sichuan University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Min Feng |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Pathology, West China Second University Hospital, Sichuan University & Key Laboratory of Birth Defect and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China. |
| authorships[4].author.id | https://openalex.org/A5012247372 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3965-4816 |
| authorships[4].author.display_name | Yongquan Yang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[4].affiliations[0].raw_affiliation_string | Sichuan University, Chengdu, China |
| authorships[4].affiliations[1].raw_affiliation_string | Department of Pathology and Institute of Clinical Pathology, West China Hospital, |
| authorships[4].institutions[0].id | https://openalex.org/I24185976 |
| authorships[4].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Sichuan University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yongquan Yang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Pathology and Institute of Clinical Pathology, West China Hospital,, Sichuan University, Chengdu, China |
| authorships[5].author.id | https://openalex.org/A5113040988 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7472-6443 |
| authorships[5].author.display_name | Hong Bu |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[5].affiliations[0].raw_affiliation_string | Sichuan University, Chengdu, China |
| authorships[5].affiliations[1].raw_affiliation_string | Department of Pathology and Institute of Clinical Pathology, West China Hospital, |
| authorships[5].institutions[0].id | https://openalex.org/I24185976 |
| authorships[5].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Sichuan University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Hong Bu |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Department of Pathology and Institute of Clinical Pathology, West China Hospital,, Sichuan University, Chengdu, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.36227/techrxiv.22275958.v3 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Exponential Distance Transform Maps for Cell Localization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12874 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9975000023841858 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Digital Imaging for Blood Diseases |
| related_works | https://openalex.org/W4293226380, https://openalex.org/W4313906399, https://openalex.org/W4321487865, https://openalex.org/W2811106690, https://openalex.org/W4239306820, https://openalex.org/W2947043951, https://openalex.org/W2318112981, https://openalex.org/W2964954556, https://openalex.org/W3019910406, https://openalex.org/W2383286906 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.36227/techrxiv.22275958.v3 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.36227/techrxiv.22275958.v3 |
| primary_location.id | doi:10.36227/techrxiv.22275958.v3 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.36227/techrxiv.22275958.v3 |
| publication_date | 2023-09-05 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W6630191597, https://openalex.org/W6600874529, https://openalex.org/W6608213748, https://openalex.org/W6600175266, https://openalex.org/W6600319451, https://openalex.org/W6601067093, https://openalex.org/W6600297362, https://openalex.org/W6600769105, https://openalex.org/W6611473997, https://openalex.org/W6638553918, https://openalex.org/W6600248585, https://openalex.org/W6605988140, https://openalex.org/W6601102799, https://openalex.org/W6632699545, https://openalex.org/W6600804206, https://openalex.org/W6600213211, https://openalex.org/W6600351811, https://openalex.org/W6602411596, https://openalex.org/W3133153571, https://openalex.org/W2734436097, https://openalex.org/W2908670068, https://openalex.org/W4229448345, https://openalex.org/W2974825848, https://openalex.org/W2269649163, https://openalex.org/W4298130664, https://openalex.org/W3188354902, https://openalex.org/W3127751679, https://openalex.org/W3216149514, https://openalex.org/W2995582330, https://openalex.org/W2520304734, https://openalex.org/W2962716568, https://openalex.org/W4281254235, https://openalex.org/W4225919579, https://openalex.org/W3126827997, https://openalex.org/W3208051853, https://openalex.org/W3134286047, https://openalex.org/W3204146347, https://openalex.org/W3138516171, https://openalex.org/W4294310792, https://openalex.org/W3091692930, https://openalex.org/W2312404985, https://openalex.org/W4312977443, https://openalex.org/W2916798096, https://openalex.org/W2621507294, https://openalex.org/W3204103340, https://openalex.org/W1901129140, https://openalex.org/W2963618258, https://openalex.org/W4382402832, https://openalex.org/W2163352848, https://openalex.org/W2997512706, https://openalex.org/W4308361273, https://openalex.org/W3011692440, https://openalex.org/W2984155152, https://openalex.org/W3035459165, https://openalex.org/W4293584584, https://openalex.org/W4386352865, https://openalex.org/W2945576057, https://openalex.org/W4295934721, https://openalex.org/W2798122215, https://openalex.org/W3003623648, https://openalex.org/W4205396300, https://openalex.org/W2900936384, https://openalex.org/W2964209782, https://openalex.org/W3162566581, https://openalex.org/W3170293501, https://openalex.org/W3098726213, https://openalex.org/W4226120942, https://openalex.org/W4214774769, https://openalex.org/W2738582428, https://openalex.org/W2145983039, https://openalex.org/W1938425378 |
| referenced_works_count | 71 |
| abstract_inverted_index.A | 156, 177, 198 |
| abstract_inverted_index.a | 34, 51, 143, 235 |
| abstract_inverted_index.1) | 73, 155 |
| abstract_inverted_index.2) | 89, 176 |
| abstract_inverted_index.3) | 115, 197 |
| abstract_inverted_index.To | 135 |
| abstract_inverted_index.an | 3, 21 |
| abstract_inverted_index.in | 20, 70, 82, 86, 112, 173 |
| abstract_inverted_index.is | 2, 11, 27, 93, 109, 122 |
| abstract_inverted_index.of | 6, 18, 119, 146, 152, 170, 248 |
| abstract_inverted_index.on | 41, 77, 162, 207, 219 |
| abstract_inverted_index.to | 13, 28, 56, 95, 124, 165 |
| abstract_inverted_index.we | 140 |
| abstract_inverted_index.CNN | 74 |
| abstract_inverted_index.The | 23, 90, 116 |
| abstract_inverted_index.and | 44, 61, 101, 105, 127, 132, 231, 243 |
| abstract_inverted_index.are | 66 |
| abstract_inverted_index.can | 211, 226 |
| abstract_inverted_index.for | 194, 238 |
| abstract_inverted_index.map | 32, 49, 92, 182 |
| abstract_inverted_index.new | 178, 236 |
| abstract_inverted_index.our | 224 |
| abstract_inverted_index.the | 15, 30, 47, 58, 106, 137, 147, 168, 214, 239, 246 |
| abstract_inverted_index.area | 5 |
| abstract_inverted_index.cell | 59, 87, 98, 174, 186, 202, 229, 240 |
| abstract_inverted_index.have | 80, 141 |
| abstract_inverted_index.loss | 108 |
| abstract_inverted_index.made | 142 |
| abstract_inverted_index.main | 68 |
| abstract_inverted_index.maps | 121, 209 |
| abstract_inverted_index.more | 110 |
| abstract_inverted_index.show | 222 |
| abstract_inverted_index.that | 183, 210, 223 |
| abstract_inverted_index.then | 45 |
| abstract_inverted_index.this | 71 |
| abstract_inverted_index.with | 190 |
| abstract_inverted_index.(CNN) | 38 |
| abstract_inverted_index.above | 138 |
| abstract_inverted_index.along | 189 |
| abstract_inverted_index.based | 40, 76, 161, 206 |
| abstract_inverted_index.cells | 19 |
| abstract_inverted_index.dense | 113 |
| abstract_inverted_index.ideal | 102, 191 |
| abstract_inverted_index.image | 8 |
| abstract_inverted_index.large | 84, 171 |
| abstract_inverted_index.local | 52 |
| abstract_inverted_index.model | 39, 195 |
| abstract_inverted_index.named | 201 |
| abstract_inverted_index.noise | 126 |
| abstract_inverted_index.task, | 242 |
| abstract_inverted_index.there | 65 |
| abstract_inverted_index.three | 67, 153 |
| abstract_inverted_index.using | 33, 50 |
| abstract_inverted_index.which | 10, 150 |
| abstract_inverted_index.Neural | 36 |
| abstract_inverted_index.cells. | 134 |
| abstract_inverted_index.center | 203 |
| abstract_inverted_index.color; | 88, 175 |
| abstract_inverted_index.image. | 22 |
| abstract_inverted_index.models | 75 |
| abstract_inverted_index.module | 160 |
| abstract_inverted_index.mutual | 128 |
| abstract_inverted_index.number | 62 |
| abstract_inverted_index.obtain | 57 |
| abstract_inverted_index.parts: | 154 |
| abstract_inverted_index.search | 54 |
| abstract_inverted_index.tackle | 136 |
| abstract_inverted_index.update | 145 |
| abstract_inverted_index.between | 130 |
| abstract_inverted_index.density | 31, 48, 91, 120 |
| abstract_inverted_index.improve | 213, 228 |
| abstract_inverted_index.issues, | 139 |
| abstract_inverted_index.maximum | 53 |
| abstract_inverted_index.medical | 7 |
| abstract_inverted_index.obvious | 111 |
| abstract_inverted_index.precise | 16 |
| abstract_inverted_index.predict | 29 |
| abstract_inverted_index.process | 46 |
| abstract_inverted_index.provide | 96 |
| abstract_inverted_index.thereby | 244 |
| abstract_inverted_index.vanilla | 42, 78 |
| abstract_inverted_index.However, | 64 |
| abstract_inverted_index.Networks | 37 |
| abstract_inverted_index.accurate | 97, 185 |
| abstract_inverted_index.approach | 225 |
| abstract_inverted_index.baseline | 237 |
| abstract_inverted_index.consists | 151 |
| abstract_inverted_index.counting | 232 |
| abstract_inverted_index.datasets | 221 |
| abstract_inverted_index.distance | 180 |
| abstract_inverted_index.existing | 24, 148 |
| abstract_inverted_index.gradient | 103, 158, 192 |
| abstract_inverted_index.handling | 83 |
| abstract_inverted_index.location | 17, 60, 99, 187, 208 |
| abstract_inverted_index.mitigate | 167 |
| abstract_inverted_index.multiple | 220 |
| abstract_inverted_index.negative | 131 |
| abstract_inverted_index.paradigm | 26 |
| abstract_inverted_index.positive | 133 |
| abstract_inverted_index.problems | 69 |
| abstract_inverted_index.provides | 184 |
| abstract_inverted_index.regions; | 114 |
| abstract_inverted_index.strategy | 55, 118, 200, 205 |
| abstract_inverted_index.Extensive | 217 |
| abstract_inverted_index.analysis, | 9 |
| abstract_inverted_index.challenge | 169 |
| abstract_inverted_index.dedicated | 12 |
| abstract_inverted_index.difficult | 94 |
| abstract_inverted_index.important | 4 |
| abstract_inverted_index.learning; | 196 |
| abstract_inverted_index.paradigm, | 149 |
| abstract_inverted_index.paradigm: | 72 |
| abstract_inverted_index.transform | 181 |
| abstract_inverted_index.background | 125 |
| abstract_inverted_index.difference | 163 |
| abstract_inverted_index.difficulty | 81 |
| abstract_inverted_index.efficiency | 247 |
| abstract_inverted_index.increasing | 245 |
| abstract_inverted_index.predicting | 14 |
| abstract_inverted_index.variations | 85, 172 |
| abstract_inverted_index.aggregation | 159 |
| abstract_inverted_index.convolution | 43, 79, 164 |
| abstract_inverted_index.effectively | 166 |
| abstract_inverted_index.experiments | 218 |
| abstract_inverted_index.exponential | 179 |
| abstract_inverted_index.information | 100, 107, 188, 193 |
| abstract_inverted_index.multi-scale | 157 |
| abstract_inverted_index.susceptible | 123 |
| abstract_inverted_index.establishing | 234 |
| abstract_inverted_index.information, | 104 |
| abstract_inverted_index.information. | 63 |
| abstract_inverted_index.interference | 129 |
| abstract_inverted_index.localization | 1, 25, 204, 215, 230, 241 |
| abstract_inverted_index.performance, | 233 |
| abstract_inverted_index.performance. | 216 |
| abstract_inverted_index.<p>Cell | 0 |
| abstract_inverted_index.Convolutional | 35 |
| abstract_inverted_index.comprehensive | 144 |
| abstract_inverted_index.significantly | 212 |
| abstract_inverted_index.substantially | 227 |
| abstract_inverted_index.computer-aided | 249 |
| abstract_inverted_index.post-processing | 117, 199 |
| abstract_inverted_index.diagnosis.</p> | 250 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5113040988 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I24185976 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.44999998807907104 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.12438098 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |