Expressive dynamics models with nonlinear injective readouts enable reliable recovery of latent features from neural activity Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2309.06402
The advent of large-scale neural recordings has enabled new methods to discover the computational mechanisms of neural circuits by understanding the rules that govern how their state evolves over time. While these \textit{neural dynamics} cannot be directly measured, they can typically be approximated by low-dimensional models in a latent space. How these models represent the mapping from latent space to neural space can affect the interpretability of the latent representation. We show that typical choices for this mapping (e.g., linear or MLP) often lack the property of injectivity, meaning that changes in latent state are not obligated to affect activity in the neural space. During training, non-injective readouts incentivize the invention of dynamics that misrepresent the underlying system and the computation it performs. Combining our injective Flow readout with prior work on interpretable latent dynamics models, we created the Ordinary Differential equations autoencoder with Injective Nonlinear readout (ODIN), which captures latent dynamical systems that are nonlinearly embedded into observed neural activity via an approximately injective nonlinear mapping. We show that ODIN can recover nonlinearly embedded systems from simulated neural activity, even when the nature of the system and embedding are unknown. Additionally, ODIN enables the unsupervised recovery of underlying dynamical features (e.g., fixed points) and embedding geometry. When applied to biological neural recordings, ODIN can reconstruct neural activity with comparable accuracy to previous state-of-the-art methods while using substantially fewer latent dimensions. Overall, ODIN's accuracy in recovering ground-truth latent features and ability to accurately reconstruct neural activity with low dimensionality make it a promising method for distilling interpretable dynamics that can help explain neural computation.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2309.06402
- https://arxiv.org/pdf/2309.06402
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386722175
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386722175Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2309.06402Digital Object Identifier
- Title
-
Expressive dynamics models with nonlinear injective readouts enable reliable recovery of latent features from neural activityWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-09-12Full publication date if available
- Authors
-
Christopher Versteeg, Andrew R. Sedler, Jonathan McCart, Chethan PandarinathList of authors in order
- Landing page
-
https://arxiv.org/abs/2309.06402Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2309.06402Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2309.06402Direct OA link when available
- Concepts
-
Interpretability, Embedding, Injective function, Nonlinear system, Computer science, Artificial neural network, Artificial intelligence, Representation (politics), Algorithm, Mathematics, Physics, Discrete mathematics, Law, Quantum mechanics, Political science, PoliticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386722175 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2309.06402 |
| ids.doi | https://doi.org/10.48550/arxiv.2309.06402 |
| ids.openalex | https://openalex.org/W4386722175 |
| fwci | |
| type | preprint |
| title | Expressive dynamics models with nonlinear injective readouts enable reliable recovery of latent features from neural activity |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10581 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9887999892234802 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | Neural dynamics and brain function |
| topics[1].id | https://openalex.org/T10320 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9779999852180481 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Neural Networks and Applications |
| topics[2].id | https://openalex.org/T11206 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9717000126838684 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3109 |
| topics[2].subfield.display_name | Statistical and Nonlinear Physics |
| topics[2].display_name | Model Reduction and Neural Networks |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2781067378 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8136954307556152 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[0].display_name | Interpretability |
| concepts[1].id | https://openalex.org/C41608201 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6377484798431396 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[1].display_name | Embedding |
| concepts[2].id | https://openalex.org/C128107574 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5638560056686401 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q182003 |
| concepts[2].display_name | Injective function |
| concepts[3].id | https://openalex.org/C158622935 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5268812775611877 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[3].display_name | Nonlinear system |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5218202471733093 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4690943956375122 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4674207866191864 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C2776359362 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4570155441761017 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[7].display_name | Representation (politics) |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3601955771446228 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.2870902419090271 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.12359994649887085 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| concepts[11].id | https://openalex.org/C118615104 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0735267698764801 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[11].display_name | Discrete mathematics |
| concepts[12].id | https://openalex.org/C199539241 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[12].display_name | Law |
| concepts[13].id | https://openalex.org/C62520636 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[13].display_name | Quantum mechanics |
| concepts[14].id | https://openalex.org/C17744445 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[14].display_name | Political science |
| concepts[15].id | https://openalex.org/C94625758 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[15].display_name | Politics |
| keywords[0].id | https://openalex.org/keywords/interpretability |
| keywords[0].score | 0.8136954307556152 |
| keywords[0].display_name | Interpretability |
| keywords[1].id | https://openalex.org/keywords/embedding |
| keywords[1].score | 0.6377484798431396 |
| keywords[1].display_name | Embedding |
| keywords[2].id | https://openalex.org/keywords/injective-function |
| keywords[2].score | 0.5638560056686401 |
| keywords[2].display_name | Injective function |
| keywords[3].id | https://openalex.org/keywords/nonlinear-system |
| keywords[3].score | 0.5268812775611877 |
| keywords[3].display_name | Nonlinear system |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5218202471733093 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.4690943956375122 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.4674207866191864 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/representation |
| keywords[7].score | 0.4570155441761017 |
| keywords[7].display_name | Representation (politics) |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.3601955771446228 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.2870902419090271 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/physics |
| keywords[10].score | 0.12359994649887085 |
| keywords[10].display_name | Physics |
| keywords[11].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[11].score | 0.0735267698764801 |
| keywords[11].display_name | Discrete mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2309.06402 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2309.06402 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2309.06402 |
| locations[1].id | doi:10.48550/arxiv.2309.06402 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2309.06402 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5008864063 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4269-5109 |
| authorships[0].author.display_name | Christopher Versteeg |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Versteeg, Christopher |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5035425785 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9480-0698 |
| authorships[1].author.display_name | Andrew R. Sedler |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sedler, Andrew R. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5090737505 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6338-234X |
| authorships[2].author.display_name | Jonathan McCart |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | McCart, Jonathan D. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5065776938 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1241-1432 |
| authorships[3].author.display_name | Chethan Pandarinath |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Pandarinath, Chethan |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2309.06402 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-09-14T00:00:00 |
| display_name | Expressive dynamics models with nonlinear injective readouts enable reliable recovery of latent features from neural activity |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10581 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9887999892234802 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | Neural dynamics and brain function |
| related_works | https://openalex.org/W2905433371, https://openalex.org/W2888392564, https://openalex.org/W4310278675, https://openalex.org/W4388422664, https://openalex.org/W4390569940, https://openalex.org/W4361193272, https://openalex.org/W2963326959, https://openalex.org/W4388685194, https://openalex.org/W4312407344, https://openalex.org/W2894289927 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2309.06402 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2309.06402 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2309.06402 |
| primary_location.id | pmh:oai:arXiv.org:2309.06402 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2309.06402 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2309.06402 |
| publication_date | 2023-09-12 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 47, 251 |
| abstract_inverted_index.We | 70, 167 |
| abstract_inverted_index.an | 162 |
| abstract_inverted_index.be | 35, 41 |
| abstract_inverted_index.by | 18, 43 |
| abstract_inverted_index.in | 46, 91, 100, 234 |
| abstract_inverted_index.it | 121, 250 |
| abstract_inverted_index.of | 2, 15, 66, 86, 111, 184, 197 |
| abstract_inverted_index.on | 131 |
| abstract_inverted_index.or | 80 |
| abstract_inverted_index.to | 10, 59, 97, 209, 221, 241 |
| abstract_inverted_index.we | 136 |
| abstract_inverted_index.How | 50 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 118, 187, 204, 239 |
| abstract_inverted_index.are | 94, 154, 189 |
| abstract_inverted_index.can | 39, 62, 171, 214, 259 |
| abstract_inverted_index.for | 75, 254 |
| abstract_inverted_index.has | 6 |
| abstract_inverted_index.how | 24 |
| abstract_inverted_index.low | 247 |
| abstract_inverted_index.new | 8 |
| abstract_inverted_index.not | 95 |
| abstract_inverted_index.our | 124 |
| abstract_inverted_index.the | 12, 20, 54, 64, 67, 84, 101, 109, 115, 119, 138, 182, 185, 194 |
| abstract_inverted_index.via | 161 |
| abstract_inverted_index.Flow | 126 |
| abstract_inverted_index.MLP) | 81 |
| abstract_inverted_index.ODIN | 170, 192, 213 |
| abstract_inverted_index.When | 207 |
| abstract_inverted_index.even | 180 |
| abstract_inverted_index.from | 56, 176 |
| abstract_inverted_index.help | 260 |
| abstract_inverted_index.into | 157 |
| abstract_inverted_index.lack | 83 |
| abstract_inverted_index.make | 249 |
| abstract_inverted_index.over | 28 |
| abstract_inverted_index.show | 71, 168 |
| abstract_inverted_index.that | 22, 72, 89, 113, 153, 169, 258 |
| abstract_inverted_index.they | 38 |
| abstract_inverted_index.this | 76 |
| abstract_inverted_index.when | 181 |
| abstract_inverted_index.with | 128, 143, 218, 246 |
| abstract_inverted_index.work | 130 |
| abstract_inverted_index.While | 30 |
| abstract_inverted_index.fewer | 228 |
| abstract_inverted_index.fixed | 202 |
| abstract_inverted_index.often | 82 |
| abstract_inverted_index.prior | 129 |
| abstract_inverted_index.rules | 21 |
| abstract_inverted_index.space | 58, 61 |
| abstract_inverted_index.state | 26, 93 |
| abstract_inverted_index.their | 25 |
| abstract_inverted_index.these | 31, 51 |
| abstract_inverted_index.time. | 29 |
| abstract_inverted_index.using | 226 |
| abstract_inverted_index.which | 148 |
| abstract_inverted_index.while | 225 |
| abstract_inverted_index.(e.g., | 78, 201 |
| abstract_inverted_index.During | 104 |
| abstract_inverted_index.ODIN's | 232 |
| abstract_inverted_index.advent | 1 |
| abstract_inverted_index.affect | 63, 98 |
| abstract_inverted_index.cannot | 34 |
| abstract_inverted_index.govern | 23 |
| abstract_inverted_index.latent | 48, 57, 68, 92, 133, 150, 229, 237 |
| abstract_inverted_index.linear | 79 |
| abstract_inverted_index.method | 253 |
| abstract_inverted_index.models | 45, 52 |
| abstract_inverted_index.nature | 183 |
| abstract_inverted_index.neural | 4, 16, 60, 102, 159, 178, 211, 216, 244, 262 |
| abstract_inverted_index.space. | 49, 103 |
| abstract_inverted_index.system | 117, 186 |
| abstract_inverted_index.(ODIN), | 147 |
| abstract_inverted_index.ability | 240 |
| abstract_inverted_index.applied | 208 |
| abstract_inverted_index.changes | 90 |
| abstract_inverted_index.choices | 74 |
| abstract_inverted_index.created | 137 |
| abstract_inverted_index.enabled | 7 |
| abstract_inverted_index.enables | 193 |
| abstract_inverted_index.evolves | 27 |
| abstract_inverted_index.explain | 261 |
| abstract_inverted_index.mapping | 55, 77 |
| abstract_inverted_index.meaning | 88 |
| abstract_inverted_index.methods | 9, 224 |
| abstract_inverted_index.models, | 135 |
| abstract_inverted_index.points) | 203 |
| abstract_inverted_index.readout | 127, 146 |
| abstract_inverted_index.recover | 172 |
| abstract_inverted_index.systems | 152, 175 |
| abstract_inverted_index.typical | 73 |
| abstract_inverted_index.Ordinary | 139 |
| abstract_inverted_index.Overall, | 231 |
| abstract_inverted_index.accuracy | 220, 233 |
| abstract_inverted_index.activity | 99, 160, 217, 245 |
| abstract_inverted_index.captures | 149 |
| abstract_inverted_index.circuits | 17 |
| abstract_inverted_index.directly | 36 |
| abstract_inverted_index.discover | 11 |
| abstract_inverted_index.dynamics | 112, 134, 257 |
| abstract_inverted_index.embedded | 156, 174 |
| abstract_inverted_index.features | 200, 238 |
| abstract_inverted_index.mapping. | 166 |
| abstract_inverted_index.observed | 158 |
| abstract_inverted_index.previous | 222 |
| abstract_inverted_index.property | 85 |
| abstract_inverted_index.readouts | 107 |
| abstract_inverted_index.recovery | 196 |
| abstract_inverted_index.unknown. | 190 |
| abstract_inverted_index.Combining | 123 |
| abstract_inverted_index.Injective | 144 |
| abstract_inverted_index.Nonlinear | 145 |
| abstract_inverted_index.activity, | 179 |
| abstract_inverted_index.dynamical | 151, 199 |
| abstract_inverted_index.dynamics} | 33 |
| abstract_inverted_index.embedding | 188, 205 |
| abstract_inverted_index.equations | 141 |
| abstract_inverted_index.geometry. | 206 |
| abstract_inverted_index.injective | 125, 164 |
| abstract_inverted_index.invention | 110 |
| abstract_inverted_index.measured, | 37 |
| abstract_inverted_index.nonlinear | 165 |
| abstract_inverted_index.obligated | 96 |
| abstract_inverted_index.performs. | 122 |
| abstract_inverted_index.promising | 252 |
| abstract_inverted_index.represent | 53 |
| abstract_inverted_index.simulated | 177 |
| abstract_inverted_index.training, | 105 |
| abstract_inverted_index.typically | 40 |
| abstract_inverted_index.accurately | 242 |
| abstract_inverted_index.biological | 210 |
| abstract_inverted_index.comparable | 219 |
| abstract_inverted_index.distilling | 255 |
| abstract_inverted_index.mechanisms | 14 |
| abstract_inverted_index.recordings | 5 |
| abstract_inverted_index.recovering | 235 |
| abstract_inverted_index.underlying | 116, 198 |
| abstract_inverted_index.autoencoder | 142 |
| abstract_inverted_index.computation | 120 |
| abstract_inverted_index.dimensions. | 230 |
| abstract_inverted_index.incentivize | 108 |
| abstract_inverted_index.large-scale | 3 |
| abstract_inverted_index.nonlinearly | 155, 173 |
| abstract_inverted_index.reconstruct | 215, 243 |
| abstract_inverted_index.recordings, | 212 |
| abstract_inverted_index.Differential | 140 |
| abstract_inverted_index.approximated | 42 |
| abstract_inverted_index.computation. | 263 |
| abstract_inverted_index.ground-truth | 236 |
| abstract_inverted_index.injectivity, | 87 |
| abstract_inverted_index.misrepresent | 114 |
| abstract_inverted_index.unsupervised | 195 |
| abstract_inverted_index.Additionally, | 191 |
| abstract_inverted_index.approximately | 163 |
| abstract_inverted_index.computational | 13 |
| abstract_inverted_index.interpretable | 132, 256 |
| abstract_inverted_index.non-injective | 106 |
| abstract_inverted_index.substantially | 227 |
| abstract_inverted_index.understanding | 19 |
| abstract_inverted_index.\textit{neural | 32 |
| abstract_inverted_index.dimensionality | 248 |
| abstract_inverted_index.low-dimensional | 44 |
| abstract_inverted_index.representation. | 69 |
| abstract_inverted_index.interpretability | 65 |
| abstract_inverted_index.state-of-the-art | 223 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |