Extended 2D Scene Sketch-Based 3D Scene Retrieval Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.2312/3dor.20191059
Sketch-based 3D scene retrieval is to retrieve 3D scene models given a user's hand-drawn 2D scene sketch. It is a brand new but also very challenging research topic in the field of 3D object retrieval due to the semantic gap in their representations: 3D scene models or views differ from non-realistic 2D scene sketches. To boost this interesting research, we organized a 2D Scene Sketch-Based 3D Scene Retrieval track in SHREC'18, resulting a SceneSBR18 benchmark which contains 10 scene classes. In order to make it more comprehensive, we have extended the number of the scene categories from the initial 10 classes in the SceneSBR2018 benchmark to 30 classes, resulting in a new and more challenging benchmark SceneSBR2019 which has 750 2D scene sketches and 3,000 3D scene models. Therefore, the objective of this track is to further evaluate the performance and scalability of different 2D scene sketch-based 3D scene model retrieval algorithms using this extended and more comprehensive new benchmark. In this track, two groups from USA and Vietnam have successfully submitted 4 runs. Based on 7 commonly used retrieval metrics, we evaluate their retrieval performance. We have also conducted a comprehensive analysis and discussion of these methods and proposed several future research directions to deal with this challenging research topic. Deep learning techniques have been proved their great potentials again in dealing with this challenging retrieval task, in terms of both retrieval accuracy and scalability to a larger dataset. We hope this publicly available benchmark, together with its evaluation results and source code, will further enrich and promote 2D scene sketch-based 3D scene retrieval research area and its corresponding applications.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.2312/3dor.20191059
- OA Status
- green
- Cited By
- 3
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2947124752
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2947124752Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2312/3dor.20191059Digital Object Identifier
- Title
-
Extended 2D Scene Sketch-Based 3D Scene RetrievalWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-01Full publication date if available
- Authors
-
Juefei Yuan, Hameed Abdul-Rashid, Bo Li, Yijuan Lu, Tobias Schreck, Ngoc-Minh Bui, Trong-Le Do, Khac-Tuan Nguyen, Thanh-An Nguyen, Vinh-Tiep Nguyen, Minh–Triet Tran, Tianyang WangList of authors in order
- Landing page
-
https://doi.org/10.2312/3dor.20191059Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2312/3dor.20191059Direct OA link when available
- Concepts
-
Sketch, Computer science, Computer vision, Artificial intelligence, Computer graphics (images), Information retrieval, AlgorithmTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1, 2022: 1, 2020: 1Per-year citation counts (last 5 years)
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2947124752 |
|---|---|
| doi | https://doi.org/10.2312/3dor.20191059 |
| ids.doi | https://doi.org/10.2312/3dor.20191059 |
| ids.mag | 2947124752 |
| ids.openalex | https://openalex.org/W2947124752 |
| fwci | 0.21377151 |
| type | article |
| title | Extended 2D Scene Sketch-Based 3D Scene Retrieval |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10627 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9825999736785889 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Image and Video Retrieval Techniques |
| topics[1].id | https://openalex.org/T14339 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.982200026512146 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image Processing and 3D Reconstruction |
| topics[2].id | https://openalex.org/T10719 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9761999845504761 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2206 |
| topics[2].subfield.display_name | Computational Mechanics |
| topics[2].display_name | 3D Shape Modeling and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779231336 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8531855344772339 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7534724 |
| concepts[0].display_name | Sketch |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7193699479103088 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C31972630 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6001784801483154 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[2].display_name | Computer vision |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.575417697429657 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C121684516 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5048573613166809 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7600677 |
| concepts[4].display_name | Computer graphics (images) |
| concepts[5].id | https://openalex.org/C23123220 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3844006657600403 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[5].display_name | Information retrieval |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.09997400641441345 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| keywords[0].id | https://openalex.org/keywords/sketch |
| keywords[0].score | 0.8531855344772339 |
| keywords[0].display_name | Sketch |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7193699479103088 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/computer-vision |
| keywords[2].score | 0.6001784801483154 |
| keywords[2].display_name | Computer vision |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.575417697429657 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/computer-graphics |
| keywords[4].score | 0.5048573613166809 |
| keywords[4].display_name | Computer graphics (images) |
| keywords[5].id | https://openalex.org/keywords/information-retrieval |
| keywords[5].score | 0.3844006657600403 |
| keywords[5].display_name | Information retrieval |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.09997400641441345 |
| keywords[6].display_name | Algorithm |
| language | en |
| locations[0].id | doi:10.2312/3dor.20191059 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S7407052899 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Eurographics |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article-journal |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.2312/3dor.20191059 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5058681140 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Juefei Yuan |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I44854399 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Southern Mississippi , |
| authorships[0].institutions[0].id | https://openalex.org/I44854399 |
| authorships[0].institutions[0].ror | https://ror.org/0270vfa57 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210141039, https://openalex.org/I44854399 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Southern Mississippi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Juefei Yuan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Southern Mississippi , |
| authorships[1].author.id | https://openalex.org/A5032383281 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2346-5989 |
| authorships[1].author.display_name | Hameed Abdul-Rashid |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I44854399 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Southern Mississippi , |
| authorships[1].institutions[0].id | https://openalex.org/I44854399 |
| authorships[1].institutions[0].ror | https://ror.org/0270vfa57 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210141039, https://openalex.org/I44854399 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Southern Mississippi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hameed Abdul-Rashid |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Southern Mississippi , |
| authorships[2].author.id | https://openalex.org/A5100758169 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5980-4861 |
| authorships[2].author.display_name | Bo Li |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I44854399 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Southern Mississippi , |
| authorships[2].institutions[0].id | https://openalex.org/I44854399 |
| authorships[2].institutions[0].ror | https://ror.org/0270vfa57 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210141039, https://openalex.org/I44854399 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Southern Mississippi |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Bo Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Southern Mississippi , |
| authorships[3].author.id | https://openalex.org/A5059027378 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9855-8365 |
| authorships[3].author.display_name | Yijuan Lu |
| authorships[3].affiliations[0].raw_affiliation_string | Texas State University, |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yijuan Lu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Texas State University, |
| authorships[4].author.id | https://openalex.org/A5016219620 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0778-8665 |
| authorships[4].author.display_name | Tobias Schreck |
| authorships[4].affiliations[0].raw_affiliation_string | Institute of Computer Graphics and Knowledge Visualisation (7110) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Tobias Schreck |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Institute of Computer Graphics and Knowledge Visualisation (7110) |
| authorships[5].author.id | https://openalex.org/A5037306522 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Ngoc-Minh Bui |
| authorships[5].countries | VN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I123565023 |
| authorships[5].affiliations[0].raw_affiliation_string | Viet Nam National University of Ho Chi Minh City |
| authorships[5].institutions[0].id | https://openalex.org/I123565023 |
| authorships[5].institutions[0].ror | https://ror.org/00waaqh38 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I123565023 |
| authorships[5].institutions[0].country_code | VN |
| authorships[5].institutions[0].display_name | Vietnam National University Ho Chi Minh City |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ngoc-Minh Bui |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Viet Nam National University of Ho Chi Minh City |
| authorships[6].author.id | https://openalex.org/A5059439681 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2906-0360 |
| authorships[6].author.display_name | Trong-Le Do |
| authorships[6].countries | VN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I123565023 |
| authorships[6].affiliations[0].raw_affiliation_string | Viet Nam National University of Ho Chi Minh City |
| authorships[6].institutions[0].id | https://openalex.org/I123565023 |
| authorships[6].institutions[0].ror | https://ror.org/00waaqh38 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I123565023 |
| authorships[6].institutions[0].country_code | VN |
| authorships[6].institutions[0].display_name | Vietnam National University Ho Chi Minh City |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Trong-Le Do |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Viet Nam National University of Ho Chi Minh City |
| authorships[7].author.id | https://openalex.org/A5022512279 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Khac-Tuan Nguyen |
| authorships[7].countries | VN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I123565023 |
| authorships[7].affiliations[0].raw_affiliation_string | Viet Nam National University of Ho Chi Minh City |
| authorships[7].institutions[0].id | https://openalex.org/I123565023 |
| authorships[7].institutions[0].ror | https://ror.org/00waaqh38 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I123565023 |
| authorships[7].institutions[0].country_code | VN |
| authorships[7].institutions[0].display_name | Vietnam National University Ho Chi Minh City |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Khac-Tuan Nguyen |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Viet Nam National University of Ho Chi Minh City |
| authorships[8].author.id | https://openalex.org/A5102029387 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-4802-2324 |
| authorships[8].author.display_name | Thanh-An Nguyen |
| authorships[8].countries | VN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I123565023 |
| authorships[8].affiliations[0].raw_affiliation_string | Viet Nam National University of Ho Chi Minh City |
| authorships[8].institutions[0].id | https://openalex.org/I123565023 |
| authorships[8].institutions[0].ror | https://ror.org/00waaqh38 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I123565023 |
| authorships[8].institutions[0].country_code | VN |
| authorships[8].institutions[0].display_name | Vietnam National University Ho Chi Minh City |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Thanh-An Nguyen |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Viet Nam National University of Ho Chi Minh City |
| authorships[9].author.id | https://openalex.org/A5054588832 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-4260-7874 |
| authorships[9].author.display_name | Vinh-Tiep Nguyen |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Vinh-Tiep Nguyen |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5053495766 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-3046-3041 |
| authorships[10].author.display_name | Minh–Triet Tran |
| authorships[10].countries | VN |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I123565023 |
| authorships[10].affiliations[0].raw_affiliation_string | Viet Nam National University of Ho Chi Minh City |
| authorships[10].institutions[0].id | https://openalex.org/I123565023 |
| authorships[10].institutions[0].ror | https://ror.org/00waaqh38 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I123565023 |
| authorships[10].institutions[0].country_code | VN |
| authorships[10].institutions[0].display_name | Vietnam National University Ho Chi Minh City |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Minh-Triet Tran |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Viet Nam National University of Ho Chi Minh City |
| authorships[11].author.id | https://openalex.org/A5100656834 |
| authorships[11].author.orcid | https://orcid.org/0000-0003-3184-0566 |
| authorships[11].author.display_name | Tianyang Wang |
| authorships[11].countries | US |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I184692499 |
| authorships[11].affiliations[0].raw_affiliation_string | Austin Peay State university |
| authorships[11].institutions[0].id | https://openalex.org/I184692499 |
| authorships[11].institutions[0].ror | https://ror.org/05tx3bv88 |
| authorships[11].institutions[0].type | education |
| authorships[11].institutions[0].lineage | https://openalex.org/I184692499 |
| authorships[11].institutions[0].country_code | US |
| authorships[11].institutions[0].display_name | Austin Peay State University |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Tianyang Wang |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Austin Peay State university |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2312/3dor.20191059 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Extended 2D Scene Sketch-Based 3D Scene Retrieval |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10627 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9825999736785889 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Image and Video Retrieval Techniques |
| related_works | https://openalex.org/W2887637547, https://openalex.org/W2887582123, https://openalex.org/W2461786799, https://openalex.org/W2607545126, https://openalex.org/W48732850, https://openalex.org/W1590482543, https://openalex.org/W2576140197, https://openalex.org/W2139808046, https://openalex.org/W3112918358, https://openalex.org/W2122981201, https://openalex.org/W1918307475, https://openalex.org/W2936791941, https://openalex.org/W2130018553, https://openalex.org/W2597687598, https://openalex.org/W2097000623, https://openalex.org/W2108026987, https://openalex.org/W1539742539, https://openalex.org/W2136049532, https://openalex.org/W2729180649, https://openalex.org/W2537335562 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2312/3dor.20191059 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S7407052899 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Eurographics |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article-journal |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.2312/3dor.20191059 |
| primary_location.id | doi:10.2312/3dor.20191059 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S7407052899 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Eurographics |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article-journal |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.2312/3dor.20191059 |
| publication_date | 2019-01-01 |
| publication_year | 2019 |
| referenced_works_count | 0 |
| abstract_inverted_index.4 | 172 |
| abstract_inverted_index.7 | 176 |
| abstract_inverted_index.a | 11, 19, 61, 72, 110, 190, 237 |
| abstract_inverted_index.10 | 77, 99 |
| abstract_inverted_index.2D | 14, 51, 62, 120, 144, 259 |
| abstract_inverted_index.30 | 106 |
| abstract_inverted_index.3D | 1, 7, 32, 43, 65, 125, 147, 262 |
| abstract_inverted_index.In | 80, 160 |
| abstract_inverted_index.It | 17 |
| abstract_inverted_index.To | 54 |
| abstract_inverted_index.We | 186, 240 |
| abstract_inverted_index.in | 28, 40, 69, 101, 109, 221, 228 |
| abstract_inverted_index.is | 4, 18, 134 |
| abstract_inverted_index.it | 84 |
| abstract_inverted_index.of | 31, 92, 131, 142, 195, 230 |
| abstract_inverted_index.on | 175 |
| abstract_inverted_index.or | 46 |
| abstract_inverted_index.to | 5, 36, 82, 105, 135, 204, 236 |
| abstract_inverted_index.we | 59, 87, 181 |
| abstract_inverted_index.750 | 119 |
| abstract_inverted_index.USA | 166 |
| abstract_inverted_index.and | 112, 123, 140, 155, 167, 193, 198, 234, 251, 257, 267 |
| abstract_inverted_index.but | 22 |
| abstract_inverted_index.due | 35 |
| abstract_inverted_index.gap | 39 |
| abstract_inverted_index.has | 118 |
| abstract_inverted_index.its | 248, 268 |
| abstract_inverted_index.new | 21, 111, 158 |
| abstract_inverted_index.the | 29, 37, 90, 93, 97, 102, 129, 138 |
| abstract_inverted_index.two | 163 |
| abstract_inverted_index.Deep | 211 |
| abstract_inverted_index.also | 23, 188 |
| abstract_inverted_index.area | 266 |
| abstract_inverted_index.been | 215 |
| abstract_inverted_index.both | 231 |
| abstract_inverted_index.deal | 205 |
| abstract_inverted_index.from | 49, 96, 165 |
| abstract_inverted_index.have | 88, 169, 187, 214 |
| abstract_inverted_index.hope | 241 |
| abstract_inverted_index.make | 83 |
| abstract_inverted_index.more | 85, 113, 156 |
| abstract_inverted_index.this | 56, 132, 153, 161, 207, 224, 242 |
| abstract_inverted_index.used | 178 |
| abstract_inverted_index.very | 24 |
| abstract_inverted_index.will | 254 |
| abstract_inverted_index.with | 206, 223, 247 |
| abstract_inverted_index.3,000 | 124 |
| abstract_inverted_index.Based | 174 |
| abstract_inverted_index.Scene | 63, 66 |
| abstract_inverted_index.again | 220 |
| abstract_inverted_index.boost | 55 |
| abstract_inverted_index.brand | 20 |
| abstract_inverted_index.code, | 253 |
| abstract_inverted_index.field | 30 |
| abstract_inverted_index.given | 10 |
| abstract_inverted_index.great | 218 |
| abstract_inverted_index.model | 149 |
| abstract_inverted_index.order | 81 |
| abstract_inverted_index.runs. | 173 |
| abstract_inverted_index.scene | 2, 8, 15, 44, 52, 78, 94, 121, 126, 145, 148, 260, 263 |
| abstract_inverted_index.task, | 227 |
| abstract_inverted_index.terms | 229 |
| abstract_inverted_index.their | 41, 183, 217 |
| abstract_inverted_index.these | 196 |
| abstract_inverted_index.topic | 27 |
| abstract_inverted_index.track | 68, 133 |
| abstract_inverted_index.using | 152 |
| abstract_inverted_index.views | 47 |
| abstract_inverted_index.which | 75, 117 |
| abstract_inverted_index.differ | 48 |
| abstract_inverted_index.enrich | 256 |
| abstract_inverted_index.future | 201 |
| abstract_inverted_index.groups | 164 |
| abstract_inverted_index.larger | 238 |
| abstract_inverted_index.models | 9, 45 |
| abstract_inverted_index.number | 91 |
| abstract_inverted_index.object | 33 |
| abstract_inverted_index.proved | 216 |
| abstract_inverted_index.source | 252 |
| abstract_inverted_index.topic. | 210 |
| abstract_inverted_index.track, | 162 |
| abstract_inverted_index.user's | 12 |
| abstract_inverted_index.Vietnam | 168 |
| abstract_inverted_index.classes | 100 |
| abstract_inverted_index.dealing | 222 |
| abstract_inverted_index.further | 136, 255 |
| abstract_inverted_index.initial | 98 |
| abstract_inverted_index.methods | 197 |
| abstract_inverted_index.models. | 127 |
| abstract_inverted_index.promote | 258 |
| abstract_inverted_index.results | 250 |
| abstract_inverted_index.several | 200 |
| abstract_inverted_index.sketch. | 16 |
| abstract_inverted_index.accuracy | 233 |
| abstract_inverted_index.analysis | 192 |
| abstract_inverted_index.classes, | 107 |
| abstract_inverted_index.classes. | 79 |
| abstract_inverted_index.commonly | 177 |
| abstract_inverted_index.contains | 76 |
| abstract_inverted_index.dataset. | 239 |
| abstract_inverted_index.evaluate | 137, 182 |
| abstract_inverted_index.extended | 89, 154 |
| abstract_inverted_index.learning | 212 |
| abstract_inverted_index.metrics, | 180 |
| abstract_inverted_index.proposed | 199 |
| abstract_inverted_index.publicly | 243 |
| abstract_inverted_index.research | 26, 202, 209, 265 |
| abstract_inverted_index.retrieve | 6 |
| abstract_inverted_index.semantic | 38 |
| abstract_inverted_index.sketches | 122 |
| abstract_inverted_index.together | 246 |
| abstract_inverted_index.Retrieval | 67 |
| abstract_inverted_index.SHREC'18, | 70 |
| abstract_inverted_index.available | 244 |
| abstract_inverted_index.benchmark | 74, 104, 115 |
| abstract_inverted_index.conducted | 189 |
| abstract_inverted_index.different | 143 |
| abstract_inverted_index.objective | 130 |
| abstract_inverted_index.organized | 60 |
| abstract_inverted_index.research, | 58 |
| abstract_inverted_index.resulting | 71, 108 |
| abstract_inverted_index.retrieval | 3, 34, 150, 179, 184, 226, 232, 264 |
| abstract_inverted_index.sketches. | 53 |
| abstract_inverted_index.submitted | 171 |
| abstract_inverted_index.SceneSBR18 | 73 |
| abstract_inverted_index.Therefore, | 128 |
| abstract_inverted_index.algorithms | 151 |
| abstract_inverted_index.benchmark, | 245 |
| abstract_inverted_index.benchmark. | 159 |
| abstract_inverted_index.categories | 95 |
| abstract_inverted_index.directions | 203 |
| abstract_inverted_index.discussion | 194 |
| abstract_inverted_index.evaluation | 249 |
| abstract_inverted_index.hand-drawn | 13 |
| abstract_inverted_index.potentials | 219 |
| abstract_inverted_index.techniques | 213 |
| abstract_inverted_index.challenging | 25, 114, 208, 225 |
| abstract_inverted_index.interesting | 57 |
| abstract_inverted_index.performance | 139 |
| abstract_inverted_index.scalability | 141, 235 |
| abstract_inverted_index.SceneSBR2018 | 103 |
| abstract_inverted_index.SceneSBR2019 | 116 |
| abstract_inverted_index.Sketch-Based | 64 |
| abstract_inverted_index.Sketch-based | 0 |
| abstract_inverted_index.performance. | 185 |
| abstract_inverted_index.sketch-based | 146, 261 |
| abstract_inverted_index.successfully | 170 |
| abstract_inverted_index.applications. | 270 |
| abstract_inverted_index.comprehensive | 157, 191 |
| abstract_inverted_index.corresponding | 269 |
| abstract_inverted_index.non-realistic | 50 |
| abstract_inverted_index.comprehensive, | 86 |
| abstract_inverted_index.representations: | 42 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 12 |
| citation_normalized_percentile.value | 0.53203579 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |