Extensible artificial intelligence model predicts post-ablation AF recurrence using coronary sinus electrogram Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1093/ehjci/ehaa946.0560
Background Atrial fibrillation (AF) is a major public health problem with significant adverse outcomes and catheter ablation is a widely adopted treatment. The CABANA trial showed that catheter ablation reduced AF recurrence to a greater extent than medications. However, some of patients who underwent this procedure still experience relapse. Here, we present an innovative way to identify this subgroup using an artificial intelligence (AI) -assisted coronary sinus electrogram. Hypothesis Our hypothesis is that credible features in the electrogram can be extracted by AI for prediction, therefore rigorous drug administration, close follow-up or potential second procedure can be applied to these patients. Methods 67 patients from two independent hospitals (SPH & ZSH) with non-valvular persistent AF undergoing circumferential pulmonary vein isolation were enrolled in this study, 23 of which experienced recurrence 6 months after the procedure. We collected standard 2.5-second fragments of coronary sinus electrogram from ENSITE NAVX (SPH) and Carto (ZSH)system before the ablation started. A total of 1429 fragments were obtained and a transfer learning-based ResNet model was employed in our study. Fragments from ZSH were used for training and SPH for validation of deep convolutional neural networks (DCNN). The AI model performance was evaluated by accuracy, recall, precision, F-Measure and AUC. Results The prediction accuracy of the DCNN in single center reached 96%, while that in different ablation systems reached 74.3%. Also, the algorithm yielded values for the AUC, recall, precision and F-Measure of 0.76, 86.1%, 95.9% and 0.78, respectively, which shows satisfactory classification results and extensibility in different cardiology centers and brands of electroanatomic mapping instruments. Conclusions Our work has revealed the potential intrinsic correlation between coronary sinus electrical activity and AF recurrence using DCNN-based model. Moreover, the DCNN model we developed shows great prospects in the relapse prediction for personalized post-procedural management. Funding Acknowledgement Type of funding source: Foundation. Main funding source(s): The National Natural Science Foundation of China
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/ehjci/ehaa946.0560
- https://academic.oup.com/eurheartj/article-pdf/41/Supplement_2/ehaa946.0560/34517289/ehaa946.0560.pdf
- OA Status
- bronze
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3106884887
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3106884887Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/ehjci/ehaa946.0560Digital Object Identifier
- Title
-
Extensible artificial intelligence model predicts post-ablation AF recurrence using coronary sinus electrogramWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-11-01Full publication date if available
- Authors
-
Dong Huang, Zhenlin Zhang, Kaibo Lin, Zhentao Zuo, Q Chen, Dun Qian, Wei Zhu, Junyi LiList of authors in order
- Landing page
-
https://doi.org/10.1093/ehjci/ehaa946.0560Publisher landing page
- PDF URL
-
https://academic.oup.com/eurheartj/article-pdf/41/Supplement_2/ehaa946.0560/34517289/ehaa946.0560.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://academic.oup.com/eurheartj/article-pdf/41/Supplement_2/ehaa946.0560/34517289/ehaa946.0560.pdfDirect OA link when available
- Concepts
-
Medicine, Ablation, Atrial fibrillation, Coronary sinus, Cardiology, Catheter ablation, Internal medicine, Sinus rhythm, Pulmonary veinTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3106884887 |
|---|---|
| doi | https://doi.org/10.1093/ehjci/ehaa946.0560 |
| ids.doi | https://doi.org/10.1093/ehjci/ehaa946.0560 |
| ids.mag | 3106884887 |
| ids.openalex | https://openalex.org/W3106884887 |
| fwci | 0.0 |
| type | article |
| title | Extensible artificial intelligence model predicts post-ablation AF recurrence using coronary sinus electrogram |
| biblio.issue | Supplement_2 |
| biblio.volume | 41 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10065 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9980000257492065 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2705 |
| topics[0].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[0].display_name | Atrial Fibrillation Management and Outcomes |
| topics[1].id | https://openalex.org/T11217 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9887999892234802 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2705 |
| topics[1].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[1].display_name | Cardiac Arrhythmias and Treatments |
| topics[2].id | https://openalex.org/T11021 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9835000038146973 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2705 |
| topics[2].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[2].display_name | ECG Monitoring and Analysis |
| is_xpac | False |
| apc_list.value | 4238 |
| apc_list.currency | EUR |
| apc_list.value_usd | 4570 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C71924100 |
| concepts[0].level | 0 |
| concepts[0].score | 0.955055832862854 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[0].display_name | Medicine |
| concepts[1].id | https://openalex.org/C2778902805 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7193710803985596 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q322177 |
| concepts[1].display_name | Ablation |
| concepts[2].id | https://openalex.org/C2779161974 |
| concepts[2].level | 2 |
| concepts[2].score | 0.679621160030365 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q815819 |
| concepts[2].display_name | Atrial fibrillation |
| concepts[3].id | https://openalex.org/C2778259205 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6378324031829834 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q629460 |
| concepts[3].display_name | Coronary sinus |
| concepts[4].id | https://openalex.org/C164705383 |
| concepts[4].level | 1 |
| concepts[4].score | 0.633440375328064 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q10379 |
| concepts[4].display_name | Cardiology |
| concepts[5].id | https://openalex.org/C2776131983 |
| concepts[5].level | 3 |
| concepts[5].score | 0.6264219284057617 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q436572 |
| concepts[5].display_name | Catheter ablation |
| concepts[6].id | https://openalex.org/C126322002 |
| concepts[6].level | 1 |
| concepts[6].score | 0.6174279451370239 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[6].display_name | Internal medicine |
| concepts[7].id | https://openalex.org/C2775914520 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5721002221107483 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12335414 |
| concepts[7].display_name | Sinus rhythm |
| concepts[8].id | https://openalex.org/C2780689522 |
| concepts[8].level | 3 |
| concepts[8].score | 0.46685320138931274 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q535352 |
| concepts[8].display_name | Pulmonary vein |
| keywords[0].id | https://openalex.org/keywords/medicine |
| keywords[0].score | 0.955055832862854 |
| keywords[0].display_name | Medicine |
| keywords[1].id | https://openalex.org/keywords/ablation |
| keywords[1].score | 0.7193710803985596 |
| keywords[1].display_name | Ablation |
| keywords[2].id | https://openalex.org/keywords/atrial-fibrillation |
| keywords[2].score | 0.679621160030365 |
| keywords[2].display_name | Atrial fibrillation |
| keywords[3].id | https://openalex.org/keywords/coronary-sinus |
| keywords[3].score | 0.6378324031829834 |
| keywords[3].display_name | Coronary sinus |
| keywords[4].id | https://openalex.org/keywords/cardiology |
| keywords[4].score | 0.633440375328064 |
| keywords[4].display_name | Cardiology |
| keywords[5].id | https://openalex.org/keywords/catheter-ablation |
| keywords[5].score | 0.6264219284057617 |
| keywords[5].display_name | Catheter ablation |
| keywords[6].id | https://openalex.org/keywords/internal-medicine |
| keywords[6].score | 0.6174279451370239 |
| keywords[6].display_name | Internal medicine |
| keywords[7].id | https://openalex.org/keywords/sinus-rhythm |
| keywords[7].score | 0.5721002221107483 |
| keywords[7].display_name | Sinus rhythm |
| keywords[8].id | https://openalex.org/keywords/pulmonary-vein |
| keywords[8].score | 0.46685320138931274 |
| keywords[8].display_name | Pulmonary vein |
| language | en |
| locations[0].id | doi:10.1093/ehjci/ehaa946.0560 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S181568219 |
| locations[0].source.issn | 0195-668X, 1522-9645 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0195-668X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | European Heart Journal |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | |
| locations[0].pdf_url | https://academic.oup.com/eurheartj/article-pdf/41/Supplement_2/ehaa946.0560/34517289/ehaa946.0560.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | European Heart Journal |
| locations[0].landing_page_url | https://doi.org/10.1093/ehjci/ehaa946.0560 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5059754511 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2872-6164 |
| authorships[0].author.display_name | Dong Huang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210144482 |
| authorships[0].affiliations[0].raw_affiliation_string | Shanghai Sixth People's Hospital of Shanghai Jiaotong University, Shanghai, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210144482 |
| authorships[0].institutions[0].ror | https://ror.org/049zrh188 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210144482 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shanghai Sixth People's Hospital |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | D Huang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Shanghai Sixth People's Hospital of Shanghai Jiaotong University, Shanghai, China |
| authorships[1].author.id | https://openalex.org/A5055162958 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4339-1617 |
| authorships[1].author.display_name | Zhenlin Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210144482 |
| authorships[1].affiliations[0].raw_affiliation_string | Shanghai Sixth People's Hospital of Shanghai Jiaotong University, Shanghai, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210144482 |
| authorships[1].institutions[0].ror | https://ror.org/049zrh188 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210144482 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shanghai Sixth People's Hospital |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Z Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Shanghai Sixth People's Hospital of Shanghai Jiaotong University, Shanghai, China |
| authorships[2].author.id | https://openalex.org/A5066031514 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2001-8369 |
| authorships[2].author.display_name | Kaibo Lin |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210144482 |
| authorships[2].affiliations[0].raw_affiliation_string | Shanghai Sixth People's Hospital of Shanghai Jiaotong University, Shanghai, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210144482 |
| authorships[2].institutions[0].ror | https://ror.org/049zrh188 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210144482 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shanghai Sixth People's Hospital |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | K Lin |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Shanghai Sixth People's Hospital of Shanghai Jiaotong University, Shanghai, China |
| authorships[3].author.id | https://openalex.org/A5005277049 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5909-3884 |
| authorships[3].author.display_name | Zhentao Zuo |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210144482 |
| authorships[3].affiliations[0].raw_affiliation_string | Shanghai Sixth People's Hospital of Shanghai Jiaotong University, Shanghai, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210144482 |
| authorships[3].institutions[0].ror | https://ror.org/049zrh188 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210144482 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Shanghai Sixth People's Hospital |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Z Zuo |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Shanghai Sixth People's Hospital of Shanghai Jiaotong University, Shanghai, China |
| authorships[4].author.id | https://openalex.org/A5020617059 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7007-3326 |
| authorships[4].author.display_name | Q Chen |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I24943067, https://openalex.org/I4210127074 |
| authorships[4].affiliations[0].raw_affiliation_string | Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, cardiology, Shanghai, China |
| authorships[4].institutions[0].id | https://openalex.org/I24943067 |
| authorships[4].institutions[0].ror | https://ror.org/013q1eq08 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I24943067 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Fudan University |
| authorships[4].institutions[1].id | https://openalex.org/I4210127074 |
| authorships[4].institutions[1].ror | https://ror.org/032x22645 |
| authorships[4].institutions[1].type | healthcare |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210127074 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Zhongshan Hospital |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Q Chen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, cardiology, Shanghai, China |
| authorships[5].author.id | https://openalex.org/A5052782381 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7343-1942 |
| authorships[5].author.display_name | Dun Qian |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I183067930 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Biomedical Engineering,Shanghai JIaotong university, Shanghai, China |
| authorships[5].institutions[0].id | https://openalex.org/I183067930 |
| authorships[5].institutions[0].ror | https://ror.org/0220qvk04 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I183067930 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Shanghai Jiao Tong University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | D Qian |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Biomedical Engineering,Shanghai JIaotong university, Shanghai, China |
| authorships[6].author.id | https://openalex.org/A5063248853 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7190-7476 |
| authorships[6].author.display_name | Wei Zhu |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I24943067, https://openalex.org/I4210127074 |
| authorships[6].affiliations[0].raw_affiliation_string | Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, cardiology, Shanghai, China |
| authorships[6].institutions[0].id | https://openalex.org/I24943067 |
| authorships[6].institutions[0].ror | https://ror.org/013q1eq08 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I24943067 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Fudan University |
| authorships[6].institutions[1].id | https://openalex.org/I4210127074 |
| authorships[6].institutions[1].ror | https://ror.org/032x22645 |
| authorships[6].institutions[1].type | healthcare |
| authorships[6].institutions[1].lineage | https://openalex.org/I4210127074 |
| authorships[6].institutions[1].country_code | CN |
| authorships[6].institutions[1].display_name | Zhongshan Hospital |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | W Zhu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, cardiology, Shanghai, China |
| authorships[7].author.id | https://openalex.org/A5100363196 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-5320-1621 |
| authorships[7].author.display_name | Junyi Li |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210144482 |
| authorships[7].affiliations[0].raw_affiliation_string | Shanghai Sixth People's Hospital of Shanghai Jiaotong University, Shanghai, China |
| authorships[7].institutions[0].id | https://openalex.org/I4210144482 |
| authorships[7].institutions[0].ror | https://ror.org/049zrh188 |
| authorships[7].institutions[0].type | healthcare |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210144482 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Shanghai Sixth People's Hospital |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | J Li |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Shanghai Sixth People's Hospital of Shanghai Jiaotong University, Shanghai, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://academic.oup.com/eurheartj/article-pdf/41/Supplement_2/ehaa946.0560/34517289/ehaa946.0560.pdf |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Extensible artificial intelligence model predicts post-ablation AF recurrence using coronary sinus electrogram |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10065 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9980000257492065 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2705 |
| primary_topic.subfield.display_name | Cardiology and Cardiovascular Medicine |
| primary_topic.display_name | Atrial Fibrillation Management and Outcomes |
| related_works | https://openalex.org/W2189398896, https://openalex.org/W4388832742, https://openalex.org/W2055111104, https://openalex.org/W3171521285, https://openalex.org/W2954399259, https://openalex.org/W4283447555, https://openalex.org/W2092344977, https://openalex.org/W3194022041, https://openalex.org/W4220724454, https://openalex.org/W2126572786 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1093/ehjci/ehaa946.0560 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S181568219 |
| best_oa_location.source.issn | 0195-668X, 1522-9645 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0195-668X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | European Heart Journal |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://academic.oup.com/eurheartj/article-pdf/41/Supplement_2/ehaa946.0560/34517289/ehaa946.0560.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | European Heart Journal |
| best_oa_location.landing_page_url | https://doi.org/10.1093/ehjci/ehaa946.0560 |
| primary_location.id | doi:10.1093/ehjci/ehaa946.0560 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S181568219 |
| primary_location.source.issn | 0195-668X, 1522-9645 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0195-668X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | European Heart Journal |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | |
| primary_location.pdf_url | https://academic.oup.com/eurheartj/article-pdf/41/Supplement_2/ehaa946.0560/34517289/ehaa946.0560.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | European Heart Journal |
| primary_location.landing_page_url | https://doi.org/10.1093/ehjci/ehaa946.0560 |
| publication_date | 2020-11-01 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.6 | 131 |
| abstract_inverted_index.A | 156 |
| abstract_inverted_index.a | 6, 19, 34, 164 |
| abstract_inverted_index.23 | 126 |
| abstract_inverted_index.67 | 103 |
| abstract_inverted_index.AF | 31, 115, 275 |
| abstract_inverted_index.AI | 83, 192 |
| abstract_inverted_index.We | 136 |
| abstract_inverted_index.an | 53, 61 |
| abstract_inverted_index.be | 80, 97 |
| abstract_inverted_index.by | 82, 197 |
| abstract_inverted_index.in | 76, 123, 171, 211, 218, 250, 289 |
| abstract_inverted_index.is | 5, 18, 72 |
| abstract_inverted_index.of | 41, 127, 141, 158, 185, 208, 236, 256, 300, 312 |
| abstract_inverted_index.or | 92 |
| abstract_inverted_index.to | 33, 56, 99 |
| abstract_inverted_index.we | 51, 284 |
| abstract_inverted_index.Our | 70, 261 |
| abstract_inverted_index.SPH | 182 |
| abstract_inverted_index.The | 23, 191, 205, 307 |
| abstract_inverted_index.ZSH | 176 |
| abstract_inverted_index.and | 15, 149, 163, 181, 202, 234, 240, 248, 254, 274 |
| abstract_inverted_index.can | 79, 96 |
| abstract_inverted_index.for | 84, 179, 183, 229, 293 |
| abstract_inverted_index.has | 263 |
| abstract_inverted_index.our | 172 |
| abstract_inverted_index.the | 77, 134, 153, 209, 225, 230, 265, 281, 290 |
| abstract_inverted_index.two | 106 |
| abstract_inverted_index.was | 169, 195 |
| abstract_inverted_index.way | 55 |
| abstract_inverted_index.who | 43 |
| abstract_inverted_index.(AF) | 4 |
| abstract_inverted_index.(AI) | 64 |
| abstract_inverted_index.(SPH | 109 |
| abstract_inverted_index.1429 | 159 |
| abstract_inverted_index.96%, | 215 |
| abstract_inverted_index.AUC, | 231 |
| abstract_inverted_index.AUC. | 203 |
| abstract_inverted_index.DCNN | 210, 282 |
| abstract_inverted_index.Main | 304 |
| abstract_inverted_index.NAVX | 147 |
| abstract_inverted_index.Type | 299 |
| abstract_inverted_index.ZSH) | 111 |
| abstract_inverted_index.deep | 186 |
| abstract_inverted_index.drug | 88 |
| abstract_inverted_index.from | 105, 145, 175 |
| abstract_inverted_index.some | 40 |
| abstract_inverted_index.than | 37 |
| abstract_inverted_index.that | 27, 73, 217 |
| abstract_inverted_index.this | 45, 58, 124 |
| abstract_inverted_index.used | 178 |
| abstract_inverted_index.vein | 119 |
| abstract_inverted_index.were | 121, 161, 177 |
| abstract_inverted_index.with | 11, 112 |
| abstract_inverted_index.work | 262 |
| abstract_inverted_index.& | 110 |
| abstract_inverted_index.(SPH) | 148 |
| abstract_inverted_index.0.76, | 237 |
| abstract_inverted_index.0.78, | 241 |
| abstract_inverted_index.95.9% | 239 |
| abstract_inverted_index.Also, | 224 |
| abstract_inverted_index.Carto | 150 |
| abstract_inverted_index.China | 313 |
| abstract_inverted_index.Here, | 50 |
| abstract_inverted_index.after | 133 |
| abstract_inverted_index.close | 90 |
| abstract_inverted_index.great | 287 |
| abstract_inverted_index.major | 7 |
| abstract_inverted_index.model | 168, 193, 283 |
| abstract_inverted_index.shows | 244, 286 |
| abstract_inverted_index.sinus | 67, 143, 271 |
| abstract_inverted_index.still | 47 |
| abstract_inverted_index.these | 100 |
| abstract_inverted_index.total | 157 |
| abstract_inverted_index.trial | 25 |
| abstract_inverted_index.using | 60, 277 |
| abstract_inverted_index.which | 128, 243 |
| abstract_inverted_index.while | 216 |
| abstract_inverted_index.74.3%. | 223 |
| abstract_inverted_index.86.1%, | 238 |
| abstract_inverted_index.Atrial | 2 |
| abstract_inverted_index.CABANA | 24 |
| abstract_inverted_index.ENSITE | 146 |
| abstract_inverted_index.ResNet | 167 |
| abstract_inverted_index.before | 152 |
| abstract_inverted_index.brands | 255 |
| abstract_inverted_index.center | 213 |
| abstract_inverted_index.extent | 36 |
| abstract_inverted_index.health | 9 |
| abstract_inverted_index.model. | 279 |
| abstract_inverted_index.months | 132 |
| abstract_inverted_index.neural | 188 |
| abstract_inverted_index.public | 8 |
| abstract_inverted_index.second | 94 |
| abstract_inverted_index.showed | 26 |
| abstract_inverted_index.single | 212 |
| abstract_inverted_index.study, | 125 |
| abstract_inverted_index.study. | 173 |
| abstract_inverted_index.values | 228 |
| abstract_inverted_index.widely | 20 |
| abstract_inverted_index.(DCNN). | 190 |
| abstract_inverted_index.Funding | 297 |
| abstract_inverted_index.Methods | 102 |
| abstract_inverted_index.Natural | 309 |
| abstract_inverted_index.Results | 204 |
| abstract_inverted_index.Science | 310 |
| abstract_inverted_index.adopted | 21 |
| abstract_inverted_index.adverse | 13 |
| abstract_inverted_index.applied | 98 |
| abstract_inverted_index.between | 269 |
| abstract_inverted_index.centers | 253 |
| abstract_inverted_index.funding | 301, 305 |
| abstract_inverted_index.greater | 35 |
| abstract_inverted_index.mapping | 258 |
| abstract_inverted_index.present | 52 |
| abstract_inverted_index.problem | 10 |
| abstract_inverted_index.reached | 214, 222 |
| abstract_inverted_index.recall, | 199, 232 |
| abstract_inverted_index.reduced | 30 |
| abstract_inverted_index.relapse | 291 |
| abstract_inverted_index.results | 247 |
| abstract_inverted_index.source: | 302 |
| abstract_inverted_index.systems | 221 |
| abstract_inverted_index.yielded | 227 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 39 |
| abstract_inverted_index.National | 308 |
| abstract_inverted_index.ablation | 17, 29, 154, 220 |
| abstract_inverted_index.accuracy | 207 |
| abstract_inverted_index.activity | 273 |
| abstract_inverted_index.catheter | 16, 28 |
| abstract_inverted_index.coronary | 66, 142, 270 |
| abstract_inverted_index.credible | 74 |
| abstract_inverted_index.employed | 170 |
| abstract_inverted_index.enrolled | 122 |
| abstract_inverted_index.features | 75 |
| abstract_inverted_index.identify | 57 |
| abstract_inverted_index.networks | 189 |
| abstract_inverted_index.obtained | 162 |
| abstract_inverted_index.outcomes | 14 |
| abstract_inverted_index.patients | 42, 104 |
| abstract_inverted_index.relapse. | 49 |
| abstract_inverted_index.revealed | 264 |
| abstract_inverted_index.rigorous | 87 |
| abstract_inverted_index.standard | 138 |
| abstract_inverted_index.started. | 155 |
| abstract_inverted_index.subgroup | 59 |
| abstract_inverted_index.training | 180 |
| abstract_inverted_index.transfer | 165 |
| abstract_inverted_index.-assisted | 65 |
| abstract_inverted_index.F-Measure | 201, 235 |
| abstract_inverted_index.Fragments | 174 |
| abstract_inverted_index.Moreover, | 280 |
| abstract_inverted_index.accuracy, | 198 |
| abstract_inverted_index.algorithm | 226 |
| abstract_inverted_index.collected | 137 |
| abstract_inverted_index.developed | 285 |
| abstract_inverted_index.different | 219, 251 |
| abstract_inverted_index.evaluated | 196 |
| abstract_inverted_index.extracted | 81 |
| abstract_inverted_index.follow-up | 91 |
| abstract_inverted_index.fragments | 140, 160 |
| abstract_inverted_index.hospitals | 108 |
| abstract_inverted_index.intrinsic | 267 |
| abstract_inverted_index.isolation | 120 |
| abstract_inverted_index.patients. | 101 |
| abstract_inverted_index.potential | 93, 266 |
| abstract_inverted_index.precision | 233 |
| abstract_inverted_index.procedure | 46, 95 |
| abstract_inverted_index.prospects | 288 |
| abstract_inverted_index.pulmonary | 118 |
| abstract_inverted_index.therefore | 86 |
| abstract_inverted_index.underwent | 44 |
| abstract_inverted_index.2.5-second | 139 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.DCNN-based | 278 |
| abstract_inverted_index.Foundation | 311 |
| abstract_inverted_index.Hypothesis | 69 |
| abstract_inverted_index.artificial | 62 |
| abstract_inverted_index.cardiology | 252 |
| abstract_inverted_index.electrical | 272 |
| abstract_inverted_index.experience | 48 |
| abstract_inverted_index.hypothesis | 71 |
| abstract_inverted_index.innovative | 54 |
| abstract_inverted_index.persistent | 114 |
| abstract_inverted_index.precision, | 200 |
| abstract_inverted_index.prediction | 206, 292 |
| abstract_inverted_index.procedure. | 135 |
| abstract_inverted_index.recurrence | 32, 130, 276 |
| abstract_inverted_index.source(s): | 306 |
| abstract_inverted_index.treatment. | 22 |
| abstract_inverted_index.undergoing | 116 |
| abstract_inverted_index.validation | 184 |
| abstract_inverted_index.(ZSH)system | 151 |
| abstract_inverted_index.Conclusions | 260 |
| abstract_inverted_index.Foundation. | 303 |
| abstract_inverted_index.correlation | 268 |
| abstract_inverted_index.electrogram | 78, 144 |
| abstract_inverted_index.experienced | 129 |
| abstract_inverted_index.independent | 107 |
| abstract_inverted_index.management. | 296 |
| abstract_inverted_index.performance | 194 |
| abstract_inverted_index.prediction, | 85 |
| abstract_inverted_index.significant | 12 |
| abstract_inverted_index.electrogram. | 68 |
| abstract_inverted_index.fibrillation | 3 |
| abstract_inverted_index.instruments. | 259 |
| abstract_inverted_index.intelligence | 63 |
| abstract_inverted_index.medications. | 38 |
| abstract_inverted_index.non-valvular | 113 |
| abstract_inverted_index.personalized | 294 |
| abstract_inverted_index.satisfactory | 245 |
| abstract_inverted_index.convolutional | 187 |
| abstract_inverted_index.extensibility | 249 |
| abstract_inverted_index.respectively, | 242 |
| abstract_inverted_index.classification | 246 |
| abstract_inverted_index.learning-based | 166 |
| abstract_inverted_index.Acknowledgement | 298 |
| abstract_inverted_index.administration, | 89 |
| abstract_inverted_index.circumferential | 117 |
| abstract_inverted_index.electroanatomic | 257 |
| abstract_inverted_index.post-procedural | 295 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.24458212 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |