Extensions of MacMahon's sums of divisors Article Swipe
Related Concepts
Divisibility rule
Mathematics
Combinatorics
Divisor (algebraic geometry)
Generating function
Rational function
Function (biology)
Pure mathematics
Evolutionary biology
Biology
Tewodros Amdeberhan
,
George E. Andrews
,
Roberto Tauraso
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2309.03191
· OA: W4386554666
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2309.03191
· OA: W4386554666
In 1920, P. A. MacMahon generalized the (classical) notion of divisor sums by relating it to the theory of partitions of integers. In this paper, we extend the idea of MacMahon. In doing so we reveal a wealth of divisibility theorems and unexpected combinatorial identities. Our initial approach is quite different from MacMahon and involves rational function approximation to MacMahon-type generating functions. One such example involves multiple $q$-harmonic sums $$\sum_{k=1}^n\frac{(-1)^{k-1}\genfrac{[}{]}{0pt}{}{n}{k}_{q}(1+q^k)q^{\binom{k}{2}+tk}}{[k]_q^{2t} \genfrac{[}{]}{0pt}{}{n+k}{k}_{q}}=\sum_{1\leq k_1\leq\cdots\leq k_{2t}\leq n}\frac{q^{n+k_1+k_3\cdots+k_{2t-1}}+q^{k_2+k_4+\cdots+k_{2t}}}{[n+k_1]_q[k_2]_q\cdots[k_{2t}]_q}.$$
Related Topics
Finding more related topics…