External Hardware and Sensors, for ImprovedMRI
Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1002/jmri.28472
Complex engineered systems are often equipped with suites of sensors and ancillary devices that monitor their performance and maintenance needs. MRI scanners are no different in this regard. Some of the ancillary devices available to support MRI equipment, the ones of particular interest here, have the distinction of actually participating in the image acquisition process itself. Most commonly, such devices are used to monitor physiological motion or variations in the scanner's imaging fields, allowing the imaging and/or reconstruction process to adapt as imaging conditions change. “Classic” examples include electrocardiography (ECG) leads and respiratory bellows to monitor cardiac and respiratory motion, which have been standard equipment in scan rooms since the early days of MRI. Since then, many additional sensors and devices have been proposed to support MRI acquisitions. The main physical properties that they measure may be primarily “mechanical” (eg acceleration, speed, and torque), “acoustic” (sound and ultrasound), “optical” (light and infrared), or “electromagnetic” in nature. A review of these ancillary devices, as currently available in clinical and research settings, is presented here. In our opinion, these devices are not in competition with each other: as long as they provide useful and unique information, do not interfere with each other and are not prohibitively cumbersome to use, they might find their proper place in future suites of sensors. In time, MRI acquisitions will likely include a plurality of complementary signals. A little like the microbiome that provides genetic diversity to organisms, these devices can provide signal diversity to MRI acquisitions and enrich measurements. Machine‐learning (ML) algorithms are well suited at combining diverse input signals toward coherent outputs, and they could make use of all such information toward improved MRI capabilities. Evidence Level 2 Technical Efficacy Stage 1
Related Topics
- Type
- review
- Language
- en
- Landing Page
- https://doi.org/10.1002/jmri.28472
- OA Status
- green
- Cited By
- 17
- References
- 92
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4308053981
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4308053981Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/jmri.28472Digital Object Identifier
- Title
-
External Hardware and Sensors, for Improved
MRI Work title - Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-03Full publication date if available
- Authors
-
Bruno Madore, Aaron T. Hess, Adam M. J. van Niekerk, Daniel Hoinkiss, Patrick Hucker, Maxim Zaitsev, Onur Afacan, Matthias GüntherList of authors in order
- Landing page
-
https://doi.org/10.1002/jmri.28472Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/9957809Direct OA link when available
- Concepts
-
Computer science, Process (computing), Scanner, Computer hardware, SIGNAL (programming language), Echo (communications protocol), Electronics, Artificial intelligence, Simulation, Real-time computing, Electrical engineering, Engineering, Operating system, Computer network, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
17Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 11, 2024: 4, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
92Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4308053981 |
|---|---|
| doi | https://doi.org/10.1002/jmri.28472 |
| ids.doi | https://doi.org/10.1002/jmri.28472 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36326548 |
| ids.openalex | https://openalex.org/W4308053981 |
| fwci | 3.31924171 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000379 |
| mesh[1].descriptor_ui | D008279 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | methods |
| mesh[1].descriptor_name | Magnetic Resonance Imaging |
| mesh[2].qualifier_ui | Q000502 |
| mesh[2].descriptor_ui | D006321 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | physiology |
| mesh[2].descriptor_name | Heart |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D004562 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Electrocardiography |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D009038 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Motion |
| mesh[5].qualifier_ui | Q000502 |
| mesh[5].descriptor_ui | D009068 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | physiology |
| mesh[5].descriptor_name | Movement |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D006801 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Humans |
| mesh[7].qualifier_ui | Q000379 |
| mesh[7].descriptor_ui | D008279 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | methods |
| mesh[7].descriptor_name | Magnetic Resonance Imaging |
| mesh[8].qualifier_ui | Q000502 |
| mesh[8].descriptor_ui | D006321 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | physiology |
| mesh[8].descriptor_name | Heart |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D004562 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Electrocardiography |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D009038 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Motion |
| mesh[11].qualifier_ui | Q000502 |
| mesh[11].descriptor_ui | D009068 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | physiology |
| mesh[11].descriptor_name | Movement |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D006801 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Humans |
| mesh[13].qualifier_ui | Q000379 |
| mesh[13].descriptor_ui | D008279 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | methods |
| mesh[13].descriptor_name | Magnetic Resonance Imaging |
| mesh[14].qualifier_ui | Q000502 |
| mesh[14].descriptor_ui | D006321 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | physiology |
| mesh[14].descriptor_name | Heart |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D004562 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Electrocardiography |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D009038 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Motion |
| mesh[17].qualifier_ui | Q000502 |
| mesh[17].descriptor_ui | D009068 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | physiology |
| mesh[17].descriptor_name | Movement |
| type | review |
| title | External Hardware and Sensors, for Improved |
| awards[0].id | https://openalex.org/G1597655748 |
| awards[0].funder_id | https://openalex.org/F4320311904 |
| awards[0].display_name | |
| awards[0].funder_award_id | 203139/Z/16/Z |
| awards[0].funder_display_name | Wellcome Trust |
| biblio.issue | 3 |
| biblio.volume | 57 |
| biblio.last_page | 705 |
| biblio.first_page | 690 |
| topics[0].id | https://openalex.org/T10378 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Advanced MRI Techniques and Applications |
| topics[1].id | https://openalex.org/T11993 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9997000098228455 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3107 |
| topics[1].subfield.display_name | Atomic and Molecular Physics, and Optics |
| topics[1].display_name | Atomic and Subatomic Physics Research |
| topics[2].id | https://openalex.org/T11778 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9984999895095825 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Electrical and Bioimpedance Tomography |
| funders[0].id | https://openalex.org/F4320311904 |
| funders[0].ror | https://ror.org/029chgv08 |
| funders[0].display_name | Wellcome Trust |
| is_xpac | False |
| apc_list.value | 3500 |
| apc_list.currency | USD |
| apc_list.value_usd | 3500 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7421057224273682 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C98045186 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6143377423286438 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[1].display_name | Process (computing) |
| concepts[2].id | https://openalex.org/C2779751349 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5122608542442322 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1474480 |
| concepts[2].display_name | Scanner |
| concepts[3].id | https://openalex.org/C9390403 |
| concepts[3].level | 1 |
| concepts[3].score | 0.45221319794654846 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3966 |
| concepts[3].display_name | Computer hardware |
| concepts[4].id | https://openalex.org/C2779843651 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4418734014034271 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7390335 |
| concepts[4].display_name | SIGNAL (programming language) |
| concepts[5].id | https://openalex.org/C2779426996 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4358522891998291 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q18389128 |
| concepts[5].display_name | Echo (communications protocol) |
| concepts[6].id | https://openalex.org/C138331895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4127088189125061 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11650 |
| concepts[6].display_name | Electronics |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3553988039493561 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C44154836 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3443021774291992 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q45045 |
| concepts[8].display_name | Simulation |
| concepts[9].id | https://openalex.org/C79403827 |
| concepts[9].level | 1 |
| concepts[9].score | 0.330208957195282 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[9].display_name | Real-time computing |
| concepts[10].id | https://openalex.org/C119599485 |
| concepts[10].level | 1 |
| concepts[10].score | 0.20076802372932434 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[10].display_name | Electrical engineering |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.10750827193260193 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C111919701 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[12].display_name | Operating system |
| concepts[13].id | https://openalex.org/C31258907 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[13].display_name | Computer network |
| concepts[14].id | https://openalex.org/C199360897 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[14].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7421057224273682 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/process |
| keywords[1].score | 0.6143377423286438 |
| keywords[1].display_name | Process (computing) |
| keywords[2].id | https://openalex.org/keywords/scanner |
| keywords[2].score | 0.5122608542442322 |
| keywords[2].display_name | Scanner |
| keywords[3].id | https://openalex.org/keywords/computer-hardware |
| keywords[3].score | 0.45221319794654846 |
| keywords[3].display_name | Computer hardware |
| keywords[4].id | https://openalex.org/keywords/signal |
| keywords[4].score | 0.4418734014034271 |
| keywords[4].display_name | SIGNAL (programming language) |
| keywords[5].id | https://openalex.org/keywords/echo |
| keywords[5].score | 0.4358522891998291 |
| keywords[5].display_name | Echo (communications protocol) |
| keywords[6].id | https://openalex.org/keywords/electronics |
| keywords[6].score | 0.4127088189125061 |
| keywords[6].display_name | Electronics |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.3553988039493561 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/simulation |
| keywords[8].score | 0.3443021774291992 |
| keywords[8].display_name | Simulation |
| keywords[9].id | https://openalex.org/keywords/real-time-computing |
| keywords[9].score | 0.330208957195282 |
| keywords[9].display_name | Real-time computing |
| keywords[10].id | https://openalex.org/keywords/electrical-engineering |
| keywords[10].score | 0.20076802372932434 |
| keywords[10].display_name | Electrical engineering |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.10750827193260193 |
| keywords[11].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1002/jmri.28472 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S132538424 |
| locations[0].source.issn | 1053-1807, 1522-2586 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1053-1807 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Magnetic Resonance Imaging |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Magnetic Resonance Imaging |
| locations[0].landing_page_url | https://doi.org/10.1002/jmri.28472 |
| locations[1].id | pmid:36326548 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of magnetic resonance imaging : JMRI |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36326548 |
| locations[2].id | pmh:oai:publica.fraunhofer.de:publica/447695 |
| locations[2].is_oa | False |
| locations[2].source | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | review |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://publica.fraunhofer.de/handle/publica/447695 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:9957809 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | J Magn Reson Imaging |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9957809 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5043690832 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5606-8771 |
| authorships[0].author.display_name | Bruno Madore |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1283280774, https://openalex.org/I136199984 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA |
| authorships[0].institutions[0].id | https://openalex.org/I1283280774 |
| authorships[0].institutions[0].ror | https://ror.org/04b6nzv94 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I1283280774, https://openalex.org/I48633490 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Brigham and Women's Hospital |
| authorships[0].institutions[1].id | https://openalex.org/I136199984 |
| authorships[0].institutions[1].ror | https://ror.org/03vek6s52 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I136199984 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | Harvard University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bruno Madore |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA |
| authorships[1].author.id | https://openalex.org/A5007772046 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9289-5619 |
| authorships[1].author.display_name | Aaron T. Hess |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I40120149, https://openalex.org/I4210101881 |
| authorships[1].affiliations[0].raw_affiliation_string | Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK |
| authorships[1].institutions[0].id | https://openalex.org/I40120149 |
| authorships[1].institutions[0].ror | https://ror.org/052gg0110 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I40120149 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Oxford |
| authorships[1].institutions[1].id | https://openalex.org/I4210101881 |
| authorships[1].institutions[1].ror | https://ror.org/0172mzb45 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I40120149, https://openalex.org/I4210101881, https://openalex.org/I87048295 |
| authorships[1].institutions[1].country_code | GB |
| authorships[1].institutions[1].display_name | Wellcome Centre for Integrative Neuroimaging |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Aaron T. Hess |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK |
| authorships[2].author.id | https://openalex.org/A5034045067 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Adam M. J. van Niekerk |
| authorships[2].countries | SE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I28166907 |
| authorships[2].affiliations[0].raw_affiliation_string | Karolinska Institutet, Solna, Sweden |
| authorships[2].institutions[0].id | https://openalex.org/I28166907 |
| authorships[2].institutions[0].ror | https://ror.org/056d84691 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I28166907 |
| authorships[2].institutions[0].country_code | SE |
| authorships[2].institutions[0].display_name | Karolinska Institutet |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Adam M. J. van Niekerk |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Karolinska Institutet, Solna, Sweden |
| authorships[3].author.id | https://openalex.org/A5038274720 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3358-7296 |
| authorships[3].author.display_name | Daniel Hoinkiss |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210137873 |
| authorships[3].affiliations[0].raw_affiliation_string | Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany |
| authorships[3].institutions[0].id | https://openalex.org/I4210137873 |
| authorships[3].institutions[0].ror | https://ror.org/04farme71 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210137873, https://openalex.org/I4923324 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | Fraunhofer Institute for Digital Medicine |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Daniel C. Hoinkiss |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany |
| authorships[4].author.id | https://openalex.org/A5072016455 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7811-2211 |
| authorships[4].author.display_name | Patrick Hucker |
| authorships[4].countries | DE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I161046081 |
| authorships[4].affiliations[0].raw_affiliation_string | Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany |
| authorships[4].institutions[0].id | https://openalex.org/I161046081 |
| authorships[4].institutions[0].ror | https://ror.org/0245cg223 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I161046081 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | University of Freiburg |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Patrick Hucker |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany |
| authorships[5].author.id | https://openalex.org/A5046141519 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7530-1228 |
| authorships[5].author.display_name | Maxim Zaitsev |
| authorships[5].countries | DE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I161046081 |
| authorships[5].affiliations[0].raw_affiliation_string | Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany |
| authorships[5].institutions[0].id | https://openalex.org/I161046081 |
| authorships[5].institutions[0].ror | https://ror.org/0245cg223 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I161046081 |
| authorships[5].institutions[0].country_code | DE |
| authorships[5].institutions[0].display_name | University of Freiburg |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Maxim Zaitsev |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany |
| authorships[6].author.id | https://openalex.org/A5071639216 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2112-3205 |
| authorships[6].author.display_name | Onur Afacan |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I1288882113, https://openalex.org/I136199984 |
| authorships[6].affiliations[0].raw_affiliation_string | Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA |
| authorships[6].institutions[0].id | https://openalex.org/I1288882113 |
| authorships[6].institutions[0].ror | https://ror.org/00dvg7y05 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I1288882113 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Boston Children's Hospital |
| authorships[6].institutions[1].id | https://openalex.org/I136199984 |
| authorships[6].institutions[1].ror | https://ror.org/03vek6s52 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I136199984 |
| authorships[6].institutions[1].country_code | US |
| authorships[6].institutions[1].display_name | Harvard University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Onur Afacan |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA |
| authorships[7].author.id | https://openalex.org/A5103739439 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-2650-7956 |
| authorships[7].author.display_name | Matthias Günther |
| authorships[7].countries | DE |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I180437899 |
| authorships[7].affiliations[0].raw_affiliation_string | University Bremen, Bremen, Germany |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I4210137873 |
| authorships[7].affiliations[1].raw_affiliation_string | Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany |
| authorships[7].institutions[0].id | https://openalex.org/I4210137873 |
| authorships[7].institutions[0].ror | https://ror.org/04farme71 |
| authorships[7].institutions[0].type | facility |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210137873, https://openalex.org/I4923324 |
| authorships[7].institutions[0].country_code | DE |
| authorships[7].institutions[0].display_name | Fraunhofer Institute for Digital Medicine |
| authorships[7].institutions[1].id | https://openalex.org/I180437899 |
| authorships[7].institutions[1].ror | https://ror.org/04ers2y35 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I180437899 |
| authorships[7].institutions[1].country_code | DE |
| authorships[7].institutions[1].display_name | University of Bremen |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Matthias Günther |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany, University Bremen, Bremen, Germany |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9957809 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-11-07T00:00:00 |
| display_name | External Hardware and Sensors, for Improved |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10378 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Advanced MRI Techniques and Applications |
| related_works | https://openalex.org/W1473737476, https://openalex.org/W4232857084, https://openalex.org/W4245233074, https://openalex.org/W2167384162, https://openalex.org/W2949162897, https://openalex.org/W2061432289, https://openalex.org/W2001485867, https://openalex.org/W2276571074, https://openalex.org/W1517555227, https://openalex.org/W2379449167 |
| cited_by_count | 17 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 11 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:9957809 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | J Magn Reson Imaging |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9957809 |
| primary_location.id | doi:10.1002/jmri.28472 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S132538424 |
| primary_location.source.issn | 1053-1807, 1522-2586 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1053-1807 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Magnetic Resonance Imaging |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Magnetic Resonance Imaging |
| primary_location.landing_page_url | https://doi.org/10.1002/jmri.28472 |
| publication_date | 2022-11-03 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3009878276, https://openalex.org/W3032464132, https://openalex.org/W1559195783, https://openalex.org/W2044032804, https://openalex.org/W2108200714, https://openalex.org/W1589326384, https://openalex.org/W2134886608, https://openalex.org/W2160218787, https://openalex.org/W2162973827, https://openalex.org/W2115134618, https://openalex.org/W1981430297, https://openalex.org/W1970622441, https://openalex.org/W4220666084, https://openalex.org/W1980317286, https://openalex.org/W3091715635, https://openalex.org/W2118051246, https://openalex.org/W2045453176, https://openalex.org/W2122538793, https://openalex.org/W2168844688, https://openalex.org/W2161422114, https://openalex.org/W1989364786, https://openalex.org/W2077121089, https://openalex.org/W2135306600, https://openalex.org/W2074036832, https://openalex.org/W2415524820, https://openalex.org/W2766394323, https://openalex.org/W2140145493, https://openalex.org/W2031220365, https://openalex.org/W2962736189, https://openalex.org/W2551577835, https://openalex.org/W4225388110, https://openalex.org/W2009813001, https://openalex.org/W2737045932, https://openalex.org/W2101034829, https://openalex.org/W2014119085, https://openalex.org/W2970899746, https://openalex.org/W2149128480, https://openalex.org/W1977041446, https://openalex.org/W2582136908, https://openalex.org/W2078107160, https://openalex.org/W2054284122, https://openalex.org/W2901592666, https://openalex.org/W2083039650, https://openalex.org/W1974049505, https://openalex.org/W1992859884, https://openalex.org/W1982585734, https://openalex.org/W2049212735, https://openalex.org/W2149093512, https://openalex.org/W2021027088, https://openalex.org/W1996013739, https://openalex.org/W1968832397, https://openalex.org/W2769758283, https://openalex.org/W2536341687, https://openalex.org/W1528889453, https://openalex.org/W3161795316, https://openalex.org/W4200478947, https://openalex.org/W2124774611, https://openalex.org/W3142092009, https://openalex.org/W2920665628, https://openalex.org/W1802737966, https://openalex.org/W2069425565, https://openalex.org/W1528379992, https://openalex.org/W2555598182, https://openalex.org/W2967097524, https://openalex.org/W2341370834, https://openalex.org/W2094462238, https://openalex.org/W2030935958, https://openalex.org/W4245180467, https://openalex.org/W2158749722, https://openalex.org/W1979051347, https://openalex.org/W4200475762, https://openalex.org/W1935877111, https://openalex.org/W2749749729, https://openalex.org/W2030911394, https://openalex.org/W2968833217, https://openalex.org/W2069472142, https://openalex.org/W4244806922, https://openalex.org/W1983674672, https://openalex.org/W2742821594, https://openalex.org/W2958567628, https://openalex.org/W3202337699, https://openalex.org/W3112582326, https://openalex.org/W2785362870, https://openalex.org/W4224857491, https://openalex.org/W2046264964, https://openalex.org/W1912918041, https://openalex.org/W2042641183, https://openalex.org/W2072227544, https://openalex.org/W3108495647, https://openalex.org/W2944503430, https://openalex.org/W2908711411, https://openalex.org/W2293514092 |
| referenced_works_count | 92 |
| abstract_inverted_index.1 | 286 |
| abstract_inverted_index.2 | 282 |
| abstract_inverted_index.A | 156, 230 |
| abstract_inverted_index.a | 225 |
| abstract_inverted_index.In | 173, 218 |
| abstract_inverted_index.as | 81, 162, 185, 187 |
| abstract_inverted_index.at | 259 |
| abstract_inverted_index.be | 136 |
| abstract_inverted_index.do | 194 |
| abstract_inverted_index.in | 25, 50, 68, 105, 154, 165, 180, 213 |
| abstract_inverted_index.is | 170 |
| abstract_inverted_index.no | 23 |
| abstract_inverted_index.of | 8, 29, 40, 47, 112, 158, 216, 227, 272 |
| abstract_inverted_index.or | 66, 152 |
| abstract_inverted_index.to | 34, 62, 79, 94, 124, 205, 239, 247 |
| abstract_inverted_index.(eg | 139 |
| abstract_inverted_index.MRI | 20, 36, 126, 220, 248, 278 |
| abstract_inverted_index.The | 128 |
| abstract_inverted_index.all | 273 |
| abstract_inverted_index.and | 10, 17, 91, 97, 119, 142, 146, 150, 167, 191, 200, 250, 267 |
| abstract_inverted_index.are | 3, 22, 60, 178, 201, 256 |
| abstract_inverted_index.can | 243 |
| abstract_inverted_index.may | 135 |
| abstract_inverted_index.not | 179, 195, 202 |
| abstract_inverted_index.our | 174 |
| abstract_inverted_index.the | 30, 38, 45, 51, 69, 74, 109, 233 |
| abstract_inverted_index.use | 271 |
| abstract_inverted_index.(ML) | 254 |
| abstract_inverted_index.MRI. | 113 |
| abstract_inverted_index.Most | 56 |
| abstract_inverted_index.Some | 28 |
| abstract_inverted_index.been | 102, 122 |
| abstract_inverted_index.days | 111 |
| abstract_inverted_index.each | 183, 198 |
| abstract_inverted_index.find | 209 |
| abstract_inverted_index.have | 44, 101, 121 |
| abstract_inverted_index.like | 232 |
| abstract_inverted_index.long | 186 |
| abstract_inverted_index.main | 129 |
| abstract_inverted_index.make | 270 |
| abstract_inverted_index.many | 116 |
| abstract_inverted_index.ones | 39 |
| abstract_inverted_index.scan | 106 |
| abstract_inverted_index.such | 58, 274 |
| abstract_inverted_index.that | 13, 132, 235 |
| abstract_inverted_index.they | 133, 188, 207, 268 |
| abstract_inverted_index.this | 26 |
| abstract_inverted_index.use, | 206 |
| abstract_inverted_index.used | 61 |
| abstract_inverted_index.well | 257 |
| abstract_inverted_index.will | 222 |
| abstract_inverted_index.with | 6, 182, 197 |
| abstract_inverted_index.(ECG) | 89 |
| abstract_inverted_index.Level | 281 |
| abstract_inverted_index.Since | 114 |
| abstract_inverted_index.Stage | 285 |
| abstract_inverted_index.adapt | 80 |
| abstract_inverted_index.could | 269 |
| abstract_inverted_index.early | 110 |
| abstract_inverted_index.here, | 43 |
| abstract_inverted_index.here. | 172 |
| abstract_inverted_index.image | 52 |
| abstract_inverted_index.input | 262 |
| abstract_inverted_index.leads | 90 |
| abstract_inverted_index.might | 208 |
| abstract_inverted_index.often | 4 |
| abstract_inverted_index.other | 199 |
| abstract_inverted_index.place | 212 |
| abstract_inverted_index.rooms | 107 |
| abstract_inverted_index.since | 108 |
| abstract_inverted_index.their | 15, 210 |
| abstract_inverted_index.then, | 115 |
| abstract_inverted_index.these | 159, 176, 241 |
| abstract_inverted_index.time, | 219 |
| abstract_inverted_index.which | 100 |
| abstract_inverted_index.(light | 149 |
| abstract_inverted_index.(sound | 145 |
| abstract_inverted_index.and/or | 76 |
| abstract_inverted_index.enrich | 251 |
| abstract_inverted_index.future | 214 |
| abstract_inverted_index.likely | 223 |
| abstract_inverted_index.little | 231 |
| abstract_inverted_index.motion | 65 |
| abstract_inverted_index.needs. | 19 |
| abstract_inverted_index.other: | 184 |
| abstract_inverted_index.proper | 211 |
| abstract_inverted_index.review | 157 |
| abstract_inverted_index.signal | 245 |
| abstract_inverted_index.speed, | 141 |
| abstract_inverted_index.suited | 258 |
| abstract_inverted_index.suites | 7, 215 |
| abstract_inverted_index.toward | 264, 276 |
| abstract_inverted_index.unique | 192 |
| abstract_inverted_index.useful | 190 |
| abstract_inverted_index.Complex | 0 |
| abstract_inverted_index.bellows | 93 |
| abstract_inverted_index.cardiac | 96 |
| abstract_inverted_index.change. | 84 |
| abstract_inverted_index.devices | 12, 32, 59, 120, 177, 242 |
| abstract_inverted_index.diverse | 261 |
| abstract_inverted_index.fields, | 72 |
| abstract_inverted_index.genetic | 237 |
| abstract_inverted_index.imaging | 71, 75, 82 |
| abstract_inverted_index.include | 87, 224 |
| abstract_inverted_index.itself. | 55 |
| abstract_inverted_index.measure | 134 |
| abstract_inverted_index.monitor | 14, 63, 95 |
| abstract_inverted_index.motion, | 99 |
| abstract_inverted_index.nature. | 155 |
| abstract_inverted_index.process | 54, 78 |
| abstract_inverted_index.provide | 189, 244 |
| abstract_inverted_index.regard. | 27 |
| abstract_inverted_index.sensors | 9, 118 |
| abstract_inverted_index.signals | 263 |
| abstract_inverted_index.support | 35, 125 |
| abstract_inverted_index.systems | 2 |
| abstract_inverted_index.Efficacy | 284 |
| abstract_inverted_index.Evidence | 280 |
| abstract_inverted_index.actually | 48 |
| abstract_inverted_index.allowing | 73 |
| abstract_inverted_index.clinical | 166 |
| abstract_inverted_index.coherent | 265 |
| abstract_inverted_index.devices, | 161 |
| abstract_inverted_index.equipped | 5 |
| abstract_inverted_index.examples | 86 |
| abstract_inverted_index.improved | 277 |
| abstract_inverted_index.interest | 42 |
| abstract_inverted_index.opinion, | 175 |
| abstract_inverted_index.outputs, | 266 |
| abstract_inverted_index.physical | 130 |
| abstract_inverted_index.proposed | 123 |
| abstract_inverted_index.provides | 236 |
| abstract_inverted_index.research | 168 |
| abstract_inverted_index.scanners | 21 |
| abstract_inverted_index.sensors. | 217 |
| abstract_inverted_index.signals. | 229 |
| abstract_inverted_index.standard | 103 |
| abstract_inverted_index.torque), | 143 |
| abstract_inverted_index.Technical | 283 |
| abstract_inverted_index.ancillary | 11, 31, 160 |
| abstract_inverted_index.available | 33, 164 |
| abstract_inverted_index.combining | 260 |
| abstract_inverted_index.commonly, | 57 |
| abstract_inverted_index.currently | 163 |
| abstract_inverted_index.different | 24 |
| abstract_inverted_index.diversity | 238, 246 |
| abstract_inverted_index.equipment | 104 |
| abstract_inverted_index.interfere | 196 |
| abstract_inverted_index.plurality | 226 |
| abstract_inverted_index.presented | 171 |
| abstract_inverted_index.primarily | 137 |
| abstract_inverted_index.scanner's | 70 |
| abstract_inverted_index.settings, | 169 |
| abstract_inverted_index.additional | 117 |
| abstract_inverted_index.algorithms | 255 |
| abstract_inverted_index.conditions | 83 |
| abstract_inverted_index.cumbersome | 204 |
| abstract_inverted_index.engineered | 1 |
| abstract_inverted_index.equipment, | 37 |
| abstract_inverted_index.infrared), | 151 |
| abstract_inverted_index.microbiome | 234 |
| abstract_inverted_index.organisms, | 240 |
| abstract_inverted_index.particular | 41 |
| abstract_inverted_index.properties | 131 |
| abstract_inverted_index.variations | 67 |
| abstract_inverted_index.acquisition | 53 |
| abstract_inverted_index.competition | 181 |
| abstract_inverted_index.distinction | 46 |
| abstract_inverted_index.information | 275 |
| abstract_inverted_index.maintenance | 18 |
| abstract_inverted_index.performance | 16 |
| abstract_inverted_index.respiratory | 92, 98 |
| abstract_inverted_index.acquisitions | 221, 249 |
| abstract_inverted_index.information, | 193 |
| abstract_inverted_index.ultrasound), | 147 |
| abstract_inverted_index.acceleration, | 140 |
| abstract_inverted_index.acquisitions. | 127 |
| abstract_inverted_index.capabilities. | 279 |
| abstract_inverted_index.complementary | 228 |
| abstract_inverted_index.measurements. | 252 |
| abstract_inverted_index.participating | 49 |
| abstract_inverted_index.physiological | 64 |
| abstract_inverted_index.prohibitively | 203 |
| abstract_inverted_index.“Classic” | 85 |
| abstract_inverted_index.“optical” | 148 |
| abstract_inverted_index.reconstruction | 77 |
| abstract_inverted_index.“acoustic” | 144 |
| abstract_inverted_index.“mechanical” | 138 |
| abstract_inverted_index.Machine‐learning | 253 |
| abstract_inverted_index.electrocardiography | 88 |
| abstract_inverted_index.“electromagnetic” | 153 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5043690832 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I1283280774, https://openalex.org/I136199984 |
| citation_normalized_percentile.value | 0.89816168 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |