EXTRACTING LATENT NEEDS FROM ONLINE REVIEWS THROUGH DEEP LEARNING BASED LANGUAGE MODEL Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1017/pds.2023.186
Aspect-based sentiment analysis (ABSA) provides an opportunity to systematically generate user's opinions of specific aspects to enrich the idea creation process in the early stage of product/service design process. Yet, the current ABSA task has two major limitations. First, existing research mostly focusing on the subsets of ABSA task, e.g. aspect-sentiment extraction, extract aspect, opinion, and sentiment in a unified model is still an open problem. Second, the implicit opinion and sentiment are ignored in the current ABSA task. This article tackles these gaps by (1) creating a new annotated dataset comprised of five types of labels, including aspect, category, opinion, sentiment, and implicit indicator (ACOSI) and (2) developing a unified model which could extract all five types of labels simultaneously in a generative manner. Numerical experiments conducted on the manually labeled dataset originally scraped from three major e-Commerce retail stores for apparel and footwear products indicate the performance, scalability, and potentials of the framework developed. Several directions are provided for future exploration in the area of automated aspect-based sentiment analysis for user-centered design.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1017/pds.2023.186
- https://www.cambridge.org/core/services/aop-cambridge-core/content/view/B52EABEF34AB44A3BD3754F62EA5E5E2/S2732527X23001864a.pdf/div-class-title-extracting-latent-needs-from-online-reviews-through-deep-learning-based-language-model-div.pdf
- OA Status
- hybrid
- Cited By
- 6
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4381185329
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4381185329Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1017/pds.2023.186Digital Object Identifier
- Title
-
EXTRACTING LATENT NEEDS FROM ONLINE REVIEWS THROUGH DEEP LEARNING BASED LANGUAGE MODELWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-19Full publication date if available
- Authors
-
Yi Han, Ryan Bruggeman, Joseph J. Peper, Estefania Ciliotta Chehade, Tucker J. Marion, Paolo Ciuccarelli, Mohsen MoghaddamList of authors in order
- Landing page
-
https://doi.org/10.1017/pds.2023.186Publisher landing page
- PDF URL
-
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/B52EABEF34AB44A3BD3754F62EA5E5E2/S2732527X23001864a.pdf/div-class-title-extracting-latent-needs-from-online-reviews-through-deep-learning-based-language-model-div.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/B52EABEF34AB44A3BD3754F62EA5E5E2/S2732527X23001864a.pdf/div-class-title-extracting-latent-needs-from-online-reviews-through-deep-learning-based-language-model-div.pdfDirect OA link when available
- Concepts
-
Sentiment analysis, Computer science, Task (project management), Process (computing), Generative grammar, Scalability, Product (mathematics), Artificial intelligence, Service (business), Generative model, Natural language processing, Data science, Marketing, Management, Operating system, Mathematics, Database, Business, Economics, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 3, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4381185329 |
|---|---|
| doi | https://doi.org/10.1017/pds.2023.186 |
| ids.doi | https://doi.org/10.1017/pds.2023.186 |
| ids.openalex | https://openalex.org/W4381185329 |
| fwci | 1.53265733 |
| type | article |
| title | EXTRACTING LATENT NEEDS FROM ONLINE REVIEWS THROUGH DEEP LEARNING BASED LANGUAGE MODEL |
| biblio.issue | |
| biblio.volume | 3 |
| biblio.last_page | 1864 |
| biblio.first_page | 1855 |
| topics[0].id | https://openalex.org/T10664 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9979000091552734 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Sentiment Analysis and Opinion Mining |
| topics[1].id | https://openalex.org/T10609 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9799000024795532 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3312 |
| topics[1].subfield.display_name | Sociology and Political Science |
| topics[1].display_name | Digital Marketing and Social Media |
| topics[2].id | https://openalex.org/T13083 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9595999717712402 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Text Analysis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C66402592 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8700382113456726 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2271421 |
| concepts[0].display_name | Sentiment analysis |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8082641363143921 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2780451532 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6751139760017395 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[2].display_name | Task (project management) |
| concepts[3].id | https://openalex.org/C98045186 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5906302332878113 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[3].display_name | Process (computing) |
| concepts[4].id | https://openalex.org/C39890363 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5683821439743042 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[4].display_name | Generative grammar |
| concepts[5].id | https://openalex.org/C48044578 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5622954964637756 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[5].display_name | Scalability |
| concepts[6].id | https://openalex.org/C90673727 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5581595301628113 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q901718 |
| concepts[6].display_name | Product (mathematics) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.48408475518226624 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C2780378061 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4593214988708496 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q25351891 |
| concepts[8].display_name | Service (business) |
| concepts[9].id | https://openalex.org/C167966045 |
| concepts[9].level | 3 |
| concepts[9].score | 0.45481622219085693 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5532625 |
| concepts[9].display_name | Generative model |
| concepts[10].id | https://openalex.org/C204321447 |
| concepts[10].level | 1 |
| concepts[10].score | 0.39364928007125854 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[10].display_name | Natural language processing |
| concepts[11].id | https://openalex.org/C2522767166 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3866994380950928 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[11].display_name | Data science |
| concepts[12].id | https://openalex.org/C162853370 |
| concepts[12].level | 1 |
| concepts[12].score | 0.09592357277870178 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[12].display_name | Marketing |
| concepts[13].id | https://openalex.org/C187736073 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[13].display_name | Management |
| concepts[14].id | https://openalex.org/C111919701 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[14].display_name | Operating system |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C77088390 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[16].display_name | Database |
| concepts[17].id | https://openalex.org/C144133560 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[17].display_name | Business |
| concepts[18].id | https://openalex.org/C162324750 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[18].display_name | Economics |
| concepts[19].id | https://openalex.org/C2524010 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[19].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/sentiment-analysis |
| keywords[0].score | 0.8700382113456726 |
| keywords[0].display_name | Sentiment analysis |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.8082641363143921 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/task |
| keywords[2].score | 0.6751139760017395 |
| keywords[2].display_name | Task (project management) |
| keywords[3].id | https://openalex.org/keywords/process |
| keywords[3].score | 0.5906302332878113 |
| keywords[3].display_name | Process (computing) |
| keywords[4].id | https://openalex.org/keywords/generative-grammar |
| keywords[4].score | 0.5683821439743042 |
| keywords[4].display_name | Generative grammar |
| keywords[5].id | https://openalex.org/keywords/scalability |
| keywords[5].score | 0.5622954964637756 |
| keywords[5].display_name | Scalability |
| keywords[6].id | https://openalex.org/keywords/product |
| keywords[6].score | 0.5581595301628113 |
| keywords[6].display_name | Product (mathematics) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.48408475518226624 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/service |
| keywords[8].score | 0.4593214988708496 |
| keywords[8].display_name | Service (business) |
| keywords[9].id | https://openalex.org/keywords/generative-model |
| keywords[9].score | 0.45481622219085693 |
| keywords[9].display_name | Generative model |
| keywords[10].id | https://openalex.org/keywords/natural-language-processing |
| keywords[10].score | 0.39364928007125854 |
| keywords[10].display_name | Natural language processing |
| keywords[11].id | https://openalex.org/keywords/data-science |
| keywords[11].score | 0.3866994380950928 |
| keywords[11].display_name | Data science |
| keywords[12].id | https://openalex.org/keywords/marketing |
| keywords[12].score | 0.09592357277870178 |
| keywords[12].display_name | Marketing |
| language | en |
| locations[0].id | doi:10.1017/pds.2023.186 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205958 |
| locations[0].source.issn | 2732-527X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2732-527X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the Design Society |
| locations[0].source.host_organization | https://openalex.org/P4310311721 |
| locations[0].source.host_organization_name | Cambridge University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311721, https://openalex.org/P4310311702 |
| locations[0].source.host_organization_lineage_names | Cambridge University Press, University of Cambridge |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/B52EABEF34AB44A3BD3754F62EA5E5E2/S2732527X23001864a.pdf/div-class-title-extracting-latent-needs-from-online-reviews-through-deep-learning-based-language-model-div.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the Design Society |
| locations[0].landing_page_url | https://doi.org/10.1017/pds.2023.186 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5020908862 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6530-4564 |
| authorships[0].author.display_name | Yi Han |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I12912129 |
| authorships[0].affiliations[0].raw_affiliation_string | : Northeastern university; |
| authorships[0].institutions[0].id | https://openalex.org/I12912129 |
| authorships[0].institutions[0].ror | https://ror.org/04t5xt781 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I12912129 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Northeastern University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yi Han |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | : Northeastern university; |
| authorships[1].author.id | https://openalex.org/A5092201446 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ryan Bruggeman |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I12912129 |
| authorships[1].affiliations[0].raw_affiliation_string | : Northeastern university; |
| authorships[1].institutions[0].id | https://openalex.org/I12912129 |
| authorships[1].institutions[0].ror | https://ror.org/04t5xt781 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I12912129 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Northeastern University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ryan Bruggeman |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | : Northeastern university; |
| authorships[2].author.id | https://openalex.org/A5071830287 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Joseph J. Peper |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I27837315 |
| authorships[2].affiliations[0].raw_affiliation_string | : The University of Michigan |
| authorships[2].institutions[0].id | https://openalex.org/I27837315 |
| authorships[2].institutions[0].ror | https://ror.org/00jmfr291 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I27837315 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Michigan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Joseph Peper |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | : The University of Michigan |
| authorships[3].author.id | https://openalex.org/A5016805144 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5363-5606 |
| authorships[3].author.display_name | Estefania Ciliotta Chehade |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I12912129 |
| authorships[3].affiliations[0].raw_affiliation_string | northeastern university United States of America |
| authorships[3].institutions[0].id | https://openalex.org/I12912129 |
| authorships[3].institutions[0].ror | https://ror.org/04t5xt781 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I12912129 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Northeastern University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Estefania Ciliotta Chehade |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | northeastern university United States of America |
| authorships[4].author.id | https://openalex.org/A5068510150 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1238-430X |
| authorships[4].author.display_name | Tucker J. Marion |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I12912129 |
| authorships[4].affiliations[0].raw_affiliation_string | : Northeastern university; |
| authorships[4].institutions[0].id | https://openalex.org/I12912129 |
| authorships[4].institutions[0].ror | https://ror.org/04t5xt781 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I12912129 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Northeastern University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Tucker Marion |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | : Northeastern university; |
| authorships[5].author.id | https://openalex.org/A5033272916 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5831-5660 |
| authorships[5].author.display_name | Paolo Ciuccarelli |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I12912129 |
| authorships[5].affiliations[0].raw_affiliation_string | : Northeastern university; |
| authorships[5].institutions[0].id | https://openalex.org/I12912129 |
| authorships[5].institutions[0].ror | https://ror.org/04t5xt781 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I12912129 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Northeastern University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Paolo Ciuccarelli |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | : Northeastern university; |
| authorships[6].author.id | https://openalex.org/A5017863793 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-3201-6010 |
| authorships[6].author.display_name | Mohsen Moghaddam |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I12912129 |
| authorships[6].affiliations[0].raw_affiliation_string | : Northeastern university; |
| authorships[6].institutions[0].id | https://openalex.org/I12912129 |
| authorships[6].institutions[0].ror | https://ror.org/04t5xt781 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I12912129 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Northeastern University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Mohsen Moghaddam |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | : Northeastern university; |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/B52EABEF34AB44A3BD3754F62EA5E5E2/S2732527X23001864a.pdf/div-class-title-extracting-latent-needs-from-online-reviews-through-deep-learning-based-language-model-div.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | EXTRACTING LATENT NEEDS FROM ONLINE REVIEWS THROUGH DEEP LEARNING BASED LANGUAGE MODEL |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10664 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9979000091552734 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Sentiment Analysis and Opinion Mining |
| related_works | https://openalex.org/W4365211920, https://openalex.org/W3014948380, https://openalex.org/W2605642833, https://openalex.org/W2382028496, https://openalex.org/W3003391463, https://openalex.org/W3094520207, https://openalex.org/W4380551139, https://openalex.org/W2280377497, https://openalex.org/W4387506531, https://openalex.org/W3174044702 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1017/pds.2023.186 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205958 |
| best_oa_location.source.issn | 2732-527X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2732-527X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the Design Society |
| best_oa_location.source.host_organization | https://openalex.org/P4310311721 |
| best_oa_location.source.host_organization_name | Cambridge University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311721, https://openalex.org/P4310311702 |
| best_oa_location.source.host_organization_lineage_names | Cambridge University Press, University of Cambridge |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/B52EABEF34AB44A3BD3754F62EA5E5E2/S2732527X23001864a.pdf/div-class-title-extracting-latent-needs-from-online-reviews-through-deep-learning-based-language-model-div.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the Design Society |
| best_oa_location.landing_page_url | https://doi.org/10.1017/pds.2023.186 |
| primary_location.id | doi:10.1017/pds.2023.186 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205958 |
| primary_location.source.issn | 2732-527X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2732-527X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the Design Society |
| primary_location.source.host_organization | https://openalex.org/P4310311721 |
| primary_location.source.host_organization_name | Cambridge University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311721, https://openalex.org/P4310311702 |
| primary_location.source.host_organization_lineage_names | Cambridge University Press, University of Cambridge |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/B52EABEF34AB44A3BD3754F62EA5E5E2/S2732527X23001864a.pdf/div-class-title-extracting-latent-needs-from-online-reviews-through-deep-learning-based-language-model-div.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the Design Society |
| primary_location.landing_page_url | https://doi.org/10.1017/pds.2023.186 |
| publication_date | 2023-06-19 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4381185329, https://openalex.org/W2103821973, https://openalex.org/W4238846128, https://openalex.org/W4242162812, https://openalex.org/W2897247950, https://openalex.org/W2896457183, https://openalex.org/W2099167136, https://openalex.org/W2055555756, https://openalex.org/W1996134260, https://openalex.org/W2124607917, https://openalex.org/W4288400169, https://openalex.org/W2161506385, https://openalex.org/W3118869673, https://openalex.org/W2109436053, https://openalex.org/W2963264961, https://openalex.org/W2028211630, https://openalex.org/W4309201268, https://openalex.org/W2981852735, https://openalex.org/W2215376118, https://openalex.org/W2004507591, https://openalex.org/W2035265584, https://openalex.org/W2950446185, https://openalex.org/W2153227355, https://openalex.org/W6739901393, https://openalex.org/W3017464126, https://openalex.org/W3199321767, https://openalex.org/W2011865828, https://openalex.org/W3174994995, https://openalex.org/W1996631301, https://openalex.org/W3174762337, https://openalex.org/W4385245566, https://openalex.org/W2746860656, https://openalex.org/W3123942215, https://openalex.org/W3093715800, https://openalex.org/W3035529900, https://openalex.org/W3027679320, https://openalex.org/W2857028992, https://openalex.org/W2913899828, https://openalex.org/W4288089799 |
| referenced_works_count | 39 |
| abstract_inverted_index.a | 59, 88, 110, 123 |
| abstract_inverted_index.an | 6, 64 |
| abstract_inverted_index.by | 85 |
| abstract_inverted_index.in | 22, 58, 75, 122, 164 |
| abstract_inverted_index.is | 62 |
| abstract_inverted_index.of | 13, 26, 47, 93, 96, 119, 153, 167 |
| abstract_inverted_index.on | 44, 129 |
| abstract_inverted_index.to | 8, 16 |
| abstract_inverted_index.(1) | 86 |
| abstract_inverted_index.(2) | 108 |
| abstract_inverted_index.all | 116 |
| abstract_inverted_index.and | 56, 71, 103, 107, 144, 151 |
| abstract_inverted_index.are | 73, 159 |
| abstract_inverted_index.for | 142, 161, 172 |
| abstract_inverted_index.has | 35 |
| abstract_inverted_index.new | 89 |
| abstract_inverted_index.the | 18, 23, 31, 45, 68, 76, 130, 148, 154, 165 |
| abstract_inverted_index.two | 36 |
| abstract_inverted_index.ABSA | 33, 48, 78 |
| abstract_inverted_index.This | 80 |
| abstract_inverted_index.Yet, | 30 |
| abstract_inverted_index.area | 166 |
| abstract_inverted_index.e.g. | 50 |
| abstract_inverted_index.five | 94, 117 |
| abstract_inverted_index.from | 136 |
| abstract_inverted_index.gaps | 84 |
| abstract_inverted_index.idea | 19 |
| abstract_inverted_index.open | 65 |
| abstract_inverted_index.task | 34 |
| abstract_inverted_index.could | 114 |
| abstract_inverted_index.early | 24 |
| abstract_inverted_index.major | 37, 138 |
| abstract_inverted_index.model | 61, 112 |
| abstract_inverted_index.stage | 25 |
| abstract_inverted_index.still | 63 |
| abstract_inverted_index.task, | 49 |
| abstract_inverted_index.task. | 79 |
| abstract_inverted_index.these | 83 |
| abstract_inverted_index.three | 137 |
| abstract_inverted_index.types | 95, 118 |
| abstract_inverted_index.which | 113 |
| abstract_inverted_index.(ABSA) | 4 |
| abstract_inverted_index.First, | 39 |
| abstract_inverted_index.design | 28 |
| abstract_inverted_index.enrich | 17 |
| abstract_inverted_index.future | 162 |
| abstract_inverted_index.labels | 120 |
| abstract_inverted_index.mostly | 42 |
| abstract_inverted_index.retail | 140 |
| abstract_inverted_index.stores | 141 |
| abstract_inverted_index.user's | 11 |
| abstract_inverted_index.(ACOSI) | 106 |
| abstract_inverted_index.Second, | 67 |
| abstract_inverted_index.Several | 157 |
| abstract_inverted_index.apparel | 143 |
| abstract_inverted_index.article | 81 |
| abstract_inverted_index.aspect, | 54, 99 |
| abstract_inverted_index.aspects | 15 |
| abstract_inverted_index.current | 32, 77 |
| abstract_inverted_index.dataset | 91, 133 |
| abstract_inverted_index.design. | 174 |
| abstract_inverted_index.extract | 53, 115 |
| abstract_inverted_index.ignored | 74 |
| abstract_inverted_index.labeled | 132 |
| abstract_inverted_index.labels, | 97 |
| abstract_inverted_index.manner. | 125 |
| abstract_inverted_index.opinion | 70 |
| abstract_inverted_index.process | 21 |
| abstract_inverted_index.scraped | 135 |
| abstract_inverted_index.subsets | 46 |
| abstract_inverted_index.tackles | 82 |
| abstract_inverted_index.unified | 60, 111 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.analysis | 3, 171 |
| abstract_inverted_index.creating | 87 |
| abstract_inverted_index.creation | 20 |
| abstract_inverted_index.existing | 40 |
| abstract_inverted_index.focusing | 43 |
| abstract_inverted_index.footwear | 145 |
| abstract_inverted_index.generate | 10 |
| abstract_inverted_index.implicit | 69, 104 |
| abstract_inverted_index.indicate | 147 |
| abstract_inverted_index.manually | 131 |
| abstract_inverted_index.opinion, | 55, 101 |
| abstract_inverted_index.opinions | 12 |
| abstract_inverted_index.problem. | 66 |
| abstract_inverted_index.process. | 29 |
| abstract_inverted_index.products | 146 |
| abstract_inverted_index.provided | 160 |
| abstract_inverted_index.provides | 5 |
| abstract_inverted_index.research | 41 |
| abstract_inverted_index.specific | 14 |
| abstract_inverted_index.Numerical | 126 |
| abstract_inverted_index.annotated | 90 |
| abstract_inverted_index.automated | 168 |
| abstract_inverted_index.category, | 100 |
| abstract_inverted_index.comprised | 92 |
| abstract_inverted_index.conducted | 128 |
| abstract_inverted_index.framework | 155 |
| abstract_inverted_index.including | 98 |
| abstract_inverted_index.indicator | 105 |
| abstract_inverted_index.sentiment | 2, 57, 72, 170 |
| abstract_inverted_index.developed. | 156 |
| abstract_inverted_index.developing | 109 |
| abstract_inverted_index.directions | 158 |
| abstract_inverted_index.e-Commerce | 139 |
| abstract_inverted_index.generative | 124 |
| abstract_inverted_index.originally | 134 |
| abstract_inverted_index.potentials | 152 |
| abstract_inverted_index.sentiment, | 102 |
| abstract_inverted_index.experiments | 127 |
| abstract_inverted_index.exploration | 163 |
| abstract_inverted_index.extraction, | 52 |
| abstract_inverted_index.opportunity | 7 |
| abstract_inverted_index.Aspect-based | 1 |
| abstract_inverted_index.aspect-based | 169 |
| abstract_inverted_index.limitations. | 38 |
| abstract_inverted_index.performance, | 149 |
| abstract_inverted_index.scalability, | 150 |
| abstract_inverted_index.user-centered | 173 |
| abstract_inverted_index.simultaneously | 121 |
| abstract_inverted_index.systematically | 9 |
| abstract_inverted_index.product/service | 27 |
| abstract_inverted_index.aspect-sentiment | 51 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5020908862 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I12912129 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.83051763 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |