Extraction and validation of patient housing and food insecurity status in a large electronic health records database using selective prediction and active learning Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1101/2022.12.06.22283140
Objective Information on patient social determinants of health is frequently recorded in unstructured clinical notes, making it inaccessible for researchers and policymakers. We aimed to extract and validate food and housing insecurity status on a large electronic health record-derived patient cohort by combining selective prediction and active learning. Materials and Methods Manually labeled charts selected via active learning were used to train L1-regularized logistic regression models to identify the presence of food insecurity (N=372, 42% event rate) and housing insecurity (N=559, 36% event rate) in clinical notes. In addition to validating predictions against labeled data, we further validated predictions on an additional unlabeled dataset through associative studies with demographic, clinical, and environmental variables with known associations with food and housing insecurity. Results The food insecurity model had AUC=0.83, sensitivity=0.90, PPV=0.90, and undetermined rate=0.59 (n=149); the housing insecurity model had AUC=0.81, sensitivity=0.50, PPV=1, and undetermined rate=0.65 (n=224). Out of 4,337 unlabeled patients, the 395 (9%) patients predicted to have food insecurity were more likely to be Hispanic/Latino (48% vs 24%, p<0.001) and have diabetes (34% vs 12%), hypertension (43% vs 11%), and heart disease (12% vs 0.7%) (p<0.001 for all). Discussion Selective prediction and active learning can facilitate efficient labeling of social determinants of health from unstructured EHR data to identify vulnerable populations and targets for healthcare system and policy intervention. Conclusion Machine learning can be used to extract high-fidelity information on patient food and housing insecurity status.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2022.12.06.22283140
- https://www.medrxiv.org/content/medrxiv/early/2022/12/06/2022.12.06.22283140.full.pdf
- OA Status
- green
- References
- 23
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4311654339
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4311654339Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2022.12.06.22283140Digital Object Identifier
- Title
-
Extraction and validation of patient housing and food insecurity status in a large electronic health records database using selective prediction and active learningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-06Full publication date if available
- Authors
-
Akshay Swaminathan, Wasan Kumar, Iván López, Edward Tran, Ujwal Srivastava, William Yang Wang, Max K Clary, Willemijn H. van Deursen, Jonathan G. Shaw, Olivier Gevaert, Jonathan H. ChenList of authors in order
- Landing page
-
https://doi.org/10.1101/2022.12.06.22283140Publisher landing page
- PDF URL
-
https://www.medrxiv.org/content/medrxiv/early/2022/12/06/2022.12.06.22283140.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.medrxiv.org/content/medrxiv/early/2022/12/06/2022.12.06.22283140.full.pdfDirect OA link when available
- Concepts
-
Food insecurity, Logistic regression, Electronic health record, Cohort, Machine learning, Artificial intelligence, Health records, Random forest, Healthy food, Medicine, Environmental health, Computer science, Health care, Food security, Geography, Internal medicine, Political science, Food science, Law, Agriculture, Archaeology, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
23Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4311654339 |
|---|---|
| doi | https://doi.org/10.1101/2022.12.06.22283140 |
| ids.doi | https://doi.org/10.1101/2022.12.06.22283140 |
| ids.openalex | https://openalex.org/W4311654339 |
| fwci | |
| type | preprint |
| title | Extraction and validation of patient housing and food insecurity status in a large electronic health records database using selective prediction and active learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11610 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3600 |
| topics[0].subfield.display_name | General Health Professions |
| topics[0].display_name | Food Security and Health in Diverse Populations |
| topics[1].id | https://openalex.org/T10596 |
| topics[1].field.id | https://openalex.org/fields/29 |
| topics[1].field.display_name | Nursing |
| topics[1].score | 0.9879000186920166 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2916 |
| topics[1].subfield.display_name | Nutrition and Dietetics |
| topics[1].display_name | Child Nutrition and Water Access |
| topics[2].id | https://openalex.org/T11464 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.9879000186920166 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3600 |
| topics[2].subfield.display_name | General Health Professions |
| topics[2].display_name | Homelessness and Social Issues |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2993342163 |
| concepts[0].level | 4 |
| concepts[0].score | 0.7181766629219055 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1229911 |
| concepts[0].display_name | Food insecurity |
| concepts[1].id | https://openalex.org/C151956035 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6436425447463989 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1132755 |
| concepts[1].display_name | Logistic regression |
| concepts[2].id | https://openalex.org/C3020144179 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6384074091911316 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q10871684 |
| concepts[2].display_name | Electronic health record |
| concepts[3].id | https://openalex.org/C72563966 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5169288516044617 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1303415 |
| concepts[3].display_name | Cohort |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.47366318106651306 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4469951391220093 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C3019952477 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4292263388633728 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1324077 |
| concepts[6].display_name | Health records |
| concepts[7].id | https://openalex.org/C169258074 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4133342504501343 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[7].display_name | Random forest |
| concepts[8].id | https://openalex.org/C3020707900 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4102693200111389 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q25099819 |
| concepts[8].display_name | Healthy food |
| concepts[9].id | https://openalex.org/C71924100 |
| concepts[9].level | 0 |
| concepts[9].score | 0.40644457936286926 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[9].display_name | Medicine |
| concepts[10].id | https://openalex.org/C99454951 |
| concepts[10].level | 1 |
| concepts[10].score | 0.33360350131988525 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q932068 |
| concepts[10].display_name | Environmental health |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3160931468009949 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C160735492 |
| concepts[12].level | 2 |
| concepts[12].score | 0.2737308144569397 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q31207 |
| concepts[12].display_name | Health care |
| concepts[13].id | https://openalex.org/C549605437 |
| concepts[13].level | 3 |
| concepts[13].score | 0.2182333767414093 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1229911 |
| concepts[13].display_name | Food security |
| concepts[14].id | https://openalex.org/C205649164 |
| concepts[14].level | 0 |
| concepts[14].score | 0.17512494325637817 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[14].display_name | Geography |
| concepts[15].id | https://openalex.org/C126322002 |
| concepts[15].level | 1 |
| concepts[15].score | 0.1724005937576294 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[15].display_name | Internal medicine |
| concepts[16].id | https://openalex.org/C17744445 |
| concepts[16].level | 0 |
| concepts[16].score | 0.15996795892715454 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[16].display_name | Political science |
| concepts[17].id | https://openalex.org/C31903555 |
| concepts[17].level | 1 |
| concepts[17].score | 0.09895285964012146 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1637030 |
| concepts[17].display_name | Food science |
| concepts[18].id | https://openalex.org/C199539241 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[18].display_name | Law |
| concepts[19].id | https://openalex.org/C118518473 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q11451 |
| concepts[19].display_name | Agriculture |
| concepts[20].id | https://openalex.org/C166957645 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[20].display_name | Archaeology |
| concepts[21].id | https://openalex.org/C185592680 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[21].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/food-insecurity |
| keywords[0].score | 0.7181766629219055 |
| keywords[0].display_name | Food insecurity |
| keywords[1].id | https://openalex.org/keywords/logistic-regression |
| keywords[1].score | 0.6436425447463989 |
| keywords[1].display_name | Logistic regression |
| keywords[2].id | https://openalex.org/keywords/electronic-health-record |
| keywords[2].score | 0.6384074091911316 |
| keywords[2].display_name | Electronic health record |
| keywords[3].id | https://openalex.org/keywords/cohort |
| keywords[3].score | 0.5169288516044617 |
| keywords[3].display_name | Cohort |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.47366318106651306 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4469951391220093 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/health-records |
| keywords[6].score | 0.4292263388633728 |
| keywords[6].display_name | Health records |
| keywords[7].id | https://openalex.org/keywords/random-forest |
| keywords[7].score | 0.4133342504501343 |
| keywords[7].display_name | Random forest |
| keywords[8].id | https://openalex.org/keywords/healthy-food |
| keywords[8].score | 0.4102693200111389 |
| keywords[8].display_name | Healthy food |
| keywords[9].id | https://openalex.org/keywords/medicine |
| keywords[9].score | 0.40644457936286926 |
| keywords[9].display_name | Medicine |
| keywords[10].id | https://openalex.org/keywords/environmental-health |
| keywords[10].score | 0.33360350131988525 |
| keywords[10].display_name | Environmental health |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.3160931468009949 |
| keywords[11].display_name | Computer science |
| keywords[12].id | https://openalex.org/keywords/health-care |
| keywords[12].score | 0.2737308144569397 |
| keywords[12].display_name | Health care |
| keywords[13].id | https://openalex.org/keywords/food-security |
| keywords[13].score | 0.2182333767414093 |
| keywords[13].display_name | Food security |
| keywords[14].id | https://openalex.org/keywords/geography |
| keywords[14].score | 0.17512494325637817 |
| keywords[14].display_name | Geography |
| keywords[15].id | https://openalex.org/keywords/internal-medicine |
| keywords[15].score | 0.1724005937576294 |
| keywords[15].display_name | Internal medicine |
| keywords[16].id | https://openalex.org/keywords/political-science |
| keywords[16].score | 0.15996795892715454 |
| keywords[16].display_name | Political science |
| keywords[17].id | https://openalex.org/keywords/food-science |
| keywords[17].score | 0.09895285964012146 |
| keywords[17].display_name | Food science |
| language | en |
| locations[0].id | doi:10.1101/2022.12.06.22283140 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.medrxiv.org/content/medrxiv/early/2022/12/06/2022.12.06.22283140.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2022.12.06.22283140 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5079965457 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3426-9289 |
| authorships[0].author.display_name | Akshay Swaminathan |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1303377637 |
| authorships[0].affiliations[0].raw_affiliation_string | Cerebral Inc., San Francisco, CA |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I97018004 |
| authorships[0].affiliations[1].raw_affiliation_string | Stanford University School of Medicine, Stanford, CA |
| authorships[0].institutions[0].id | https://openalex.org/I97018004 |
| authorships[0].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Stanford University |
| authorships[0].institutions[1].id | https://openalex.org/I1303377637 |
| authorships[0].institutions[1].ror | https://ror.org/03jhrww64 |
| authorships[0].institutions[1].type | nonprofit |
| authorships[0].institutions[1].lineage | https://openalex.org/I1303377637 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | United Cerebral Palsy |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Akshay Swaminathan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Cerebral Inc., San Francisco, CA, Stanford University School of Medicine, Stanford, CA |
| authorships[1].author.id | https://openalex.org/A5076935330 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1361-9438 |
| authorships[1].author.display_name | Wasan Kumar |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[1].affiliations[0].raw_affiliation_string | Stanford University School of Medicine, Stanford, CA |
| authorships[1].institutions[0].id | https://openalex.org/I97018004 |
| authorships[1].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Stanford University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wasan M Kumar |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Stanford University School of Medicine, Stanford, CA |
| authorships[2].author.id | https://openalex.org/A5084224715 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Iván López |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[2].affiliations[0].raw_affiliation_string | Stanford University School of Medicine, Stanford, CA |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I1303377637 |
| authorships[2].affiliations[1].raw_affiliation_string | Cerebral Inc., San Francisco, CA |
| authorships[2].institutions[0].id | https://openalex.org/I97018004 |
| authorships[2].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Stanford University |
| authorships[2].institutions[1].id | https://openalex.org/I1303377637 |
| authorships[2].institutions[1].ror | https://ror.org/03jhrww64 |
| authorships[2].institutions[1].type | nonprofit |
| authorships[2].institutions[1].lineage | https://openalex.org/I1303377637 |
| authorships[2].institutions[1].country_code | US |
| authorships[2].institutions[1].display_name | United Cerebral Palsy |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ivan Lopez |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Cerebral Inc., San Francisco, CA, Stanford University School of Medicine, Stanford, CA |
| authorships[3].author.id | https://openalex.org/A5102804503 |
| authorships[3].author.orcid | https://orcid.org/0009-0005-4327-0291 |
| authorships[3].author.display_name | Edward Tran |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Management Science, and Engineering, Stanford University, Stanford, CA |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I97018004 |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Computer Science, Stanford University, Stanford, CA |
| authorships[3].institutions[0].id | https://openalex.org/I97018004 |
| authorships[3].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Stanford University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Edward Tran |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science, Stanford University, Stanford, CA, Department of Management Science, and Engineering, Stanford University, Stanford, CA |
| authorships[4].author.id | https://openalex.org/A5006848258 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6542-1218 |
| authorships[4].author.display_name | Ujwal Srivastava |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Science, Stanford University, Stanford, CA |
| authorships[4].institutions[0].id | https://openalex.org/I97018004 |
| authorships[4].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Stanford University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ujwal Srivastava |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Science, Stanford University, Stanford, CA |
| authorships[5].author.id | https://openalex.org/A5100702488 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0878-1257 |
| authorships[5].author.display_name | William Yang Wang |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Biology, Stanford University, Stanford, CA |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I97018004 |
| authorships[5].affiliations[1].raw_affiliation_string | Department of Bioengineering, Stanford University, Stanford, CA |
| authorships[5].institutions[0].id | https://openalex.org/I97018004 |
| authorships[5].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Stanford University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | William Wang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Bioengineering, Stanford University, Stanford, CA, Department of Biology, Stanford University, Stanford, CA |
| authorships[6].author.id | https://openalex.org/A5087246379 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Max K Clary |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[6].affiliations[0].raw_affiliation_string | Stanford University School of Medicine, Stanford, CA |
| authorships[6].institutions[0].id | https://openalex.org/I97018004 |
| authorships[6].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Stanford University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Max K Clary |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Stanford University School of Medicine, Stanford, CA |
| authorships[7].author.id | https://openalex.org/A5070257248 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-4270-1932 |
| authorships[7].author.display_name | Willemijn H. van Deursen |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[7].affiliations[0].raw_affiliation_string | Stanford University School of Medicine, Stanford, CA |
| authorships[7].institutions[0].id | https://openalex.org/I97018004 |
| authorships[7].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Stanford University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Willemijn H van Deursen |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Stanford University School of Medicine, Stanford, CA |
| authorships[8].author.id | https://openalex.org/A5009590841 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-7884-3604 |
| authorships[8].author.display_name | Jonathan G. Shaw |
| authorships[8].countries | QA, US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210134505, https://openalex.org/I97018004 |
| authorships[8].affiliations[0].raw_affiliation_string | Stanford University Dept of Primary Care and Population Health |
| authorships[8].institutions[0].id | https://openalex.org/I4210134505 |
| authorships[8].institutions[0].ror | https://ror.org/03djtgh02 |
| authorships[8].institutions[0].type | government |
| authorships[8].institutions[0].lineage | https://openalex.org/I4210134505 |
| authorships[8].institutions[0].country_code | QA |
| authorships[8].institutions[0].display_name | Primary Health Care |
| authorships[8].institutions[1].id | https://openalex.org/I97018004 |
| authorships[8].institutions[1].ror | https://ror.org/00f54p054 |
| authorships[8].institutions[1].type | education |
| authorships[8].institutions[1].lineage | https://openalex.org/I97018004 |
| authorships[8].institutions[1].country_code | US |
| authorships[8].institutions[1].display_name | Stanford University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Jonathan G Shaw |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Stanford University Dept of Primary Care and Population Health |
| authorships[9].author.id | https://openalex.org/A5078274543 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-9965-5466 |
| authorships[9].author.display_name | Olivier Gevaert |
| authorships[9].affiliations[0].raw_affiliation_string | Stanford Center for Biomedical Informatics Research (BMIR), Dept of Medicine and Dept of Biomedical Data Science |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Olivier Gevaert |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Stanford Center for Biomedical Informatics Research (BMIR), Dept of Medicine and Dept of Biomedical Data Science |
| authorships[10].author.id | https://openalex.org/A5046725885 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-4387-8740 |
| authorships[10].author.display_name | Jonathan H. Chen |
| authorships[10].affiliations[0].raw_affiliation_string | Stanford Center for Biomedical Informatics Research + Division of Hospital Medicine + Clinical Excellence Research Center, Dept of Medicine |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Jonathan H Chen |
| authorships[10].is_corresponding | True |
| authorships[10].raw_affiliation_strings | Stanford Center for Biomedical Informatics Research + Division of Hospital Medicine + Clinical Excellence Research Center, Dept of Medicine |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.medrxiv.org/content/medrxiv/early/2022/12/06/2022.12.06.22283140.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Extraction and validation of patient housing and food insecurity status in a large electronic health records database using selective prediction and active learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11610 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3600 |
| primary_topic.subfield.display_name | General Health Professions |
| primary_topic.display_name | Food Security and Health in Diverse Populations |
| related_works | https://openalex.org/W187932805, https://openalex.org/W1641026212, https://openalex.org/W2078646730, https://openalex.org/W2911982698, https://openalex.org/W2087134418, https://openalex.org/W2323588885, https://openalex.org/W3047677938, https://openalex.org/W4312053962, https://openalex.org/W2920854314, https://openalex.org/W4302340031 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2022.12.06.22283140 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2022/12/06/2022.12.06.22283140.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2022.12.06.22283140 |
| primary_location.id | doi:10.1101/2022.12.06.22283140 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2022/12/06/2022.12.06.22283140.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2022.12.06.22283140 |
| publication_date | 2022-12-06 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W4252956592, https://openalex.org/W4235079672, https://openalex.org/W2947577769, https://openalex.org/W3128717124, https://openalex.org/W3202375701, https://openalex.org/W2782531967, https://openalex.org/W4281293839, https://openalex.org/W2110106130, https://openalex.org/W3088923064, https://openalex.org/W4285733967, https://openalex.org/W3173618889, https://openalex.org/W4285146641, https://openalex.org/W4309342588, https://openalex.org/W6666817399, https://openalex.org/W2134512579, https://openalex.org/W2914584698, https://openalex.org/W3033646657, https://openalex.org/W2559008206, https://openalex.org/W2162910232, https://openalex.org/W2093399642, https://openalex.org/W3207894119, https://openalex.org/W4293238773, https://openalex.org/W4286544592 |
| referenced_works_count | 23 |
| abstract_inverted_index.a | 35 |
| abstract_inverted_index.In | 88 |
| abstract_inverted_index.We | 23 |
| abstract_inverted_index.an | 101 |
| abstract_inverted_index.be | 165, 225 |
| abstract_inverted_index.by | 42 |
| abstract_inverted_index.in | 12, 85 |
| abstract_inverted_index.is | 9 |
| abstract_inverted_index.it | 17 |
| abstract_inverted_index.of | 7, 71, 148, 200, 203 |
| abstract_inverted_index.on | 3, 34, 100, 231 |
| abstract_inverted_index.to | 25, 61, 67, 90, 157, 164, 209, 227 |
| abstract_inverted_index.vs | 168, 175, 179, 185 |
| abstract_inverted_index.we | 96 |
| abstract_inverted_index.36% | 82 |
| abstract_inverted_index.395 | 153 |
| abstract_inverted_index.42% | 75 |
| abstract_inverted_index.EHR | 207 |
| abstract_inverted_index.Out | 147 |
| abstract_inverted_index.The | 123 |
| abstract_inverted_index.and | 21, 27, 30, 46, 50, 78, 111, 119, 131, 143, 171, 181, 193, 213, 218, 234 |
| abstract_inverted_index.can | 196, 224 |
| abstract_inverted_index.for | 19, 188, 215 |
| abstract_inverted_index.had | 127, 139 |
| abstract_inverted_index.the | 69, 135, 152 |
| abstract_inverted_index.via | 56 |
| abstract_inverted_index.(12% | 184 |
| abstract_inverted_index.(34% | 174 |
| abstract_inverted_index.(43% | 178 |
| abstract_inverted_index.(48% | 167 |
| abstract_inverted_index.(9%) | 154 |
| abstract_inverted_index.24%, | 169 |
| abstract_inverted_index.data | 208 |
| abstract_inverted_index.food | 29, 72, 118, 124, 159, 233 |
| abstract_inverted_index.from | 205 |
| abstract_inverted_index.have | 158, 172 |
| abstract_inverted_index.more | 162 |
| abstract_inverted_index.used | 60, 226 |
| abstract_inverted_index.were | 59, 161 |
| abstract_inverted_index.with | 108, 114, 117 |
| abstract_inverted_index.0.7%) | 186 |
| abstract_inverted_index.11%), | 180 |
| abstract_inverted_index.12%), | 176 |
| abstract_inverted_index.4,337 | 149 |
| abstract_inverted_index.aimed | 24 |
| abstract_inverted_index.all). | 189 |
| abstract_inverted_index.data, | 95 |
| abstract_inverted_index.event | 76, 83 |
| abstract_inverted_index.heart | 182 |
| abstract_inverted_index.known | 115 |
| abstract_inverted_index.large | 36 |
| abstract_inverted_index.model | 126, 138 |
| abstract_inverted_index.rate) | 77, 84 |
| abstract_inverted_index.train | 62 |
| abstract_inverted_index.PPV=1, | 142 |
| abstract_inverted_index.active | 47, 57, 194 |
| abstract_inverted_index.charts | 54 |
| abstract_inverted_index.cohort | 41 |
| abstract_inverted_index.health | 8, 38, 204 |
| abstract_inverted_index.likely | 163 |
| abstract_inverted_index.making | 16 |
| abstract_inverted_index.models | 66 |
| abstract_inverted_index.notes, | 15 |
| abstract_inverted_index.notes. | 87 |
| abstract_inverted_index.policy | 219 |
| abstract_inverted_index.social | 5, 201 |
| abstract_inverted_index.status | 33 |
| abstract_inverted_index.system | 217 |
| abstract_inverted_index.(N=372, | 74 |
| abstract_inverted_index.(N=559, | 81 |
| abstract_inverted_index.Machine | 222 |
| abstract_inverted_index.Methods | 51 |
| abstract_inverted_index.Results | 122 |
| abstract_inverted_index.against | 93 |
| abstract_inverted_index.dataset | 104 |
| abstract_inverted_index.disease | 183 |
| abstract_inverted_index.extract | 26, 228 |
| abstract_inverted_index.further | 97 |
| abstract_inverted_index.housing | 31, 79, 120, 136, 235 |
| abstract_inverted_index.labeled | 53, 94 |
| abstract_inverted_index.patient | 4, 40, 232 |
| abstract_inverted_index.status. | 237 |
| abstract_inverted_index.studies | 107 |
| abstract_inverted_index.targets | 214 |
| abstract_inverted_index.through | 105 |
| abstract_inverted_index.(n=149); | 134 |
| abstract_inverted_index.(n=224). | 146 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Manually | 52 |
| abstract_inverted_index.addition | 89 |
| abstract_inverted_index.clinical | 14, 86 |
| abstract_inverted_index.diabetes | 173 |
| abstract_inverted_index.identify | 68, 210 |
| abstract_inverted_index.labeling | 199 |
| abstract_inverted_index.learning | 58, 195, 223 |
| abstract_inverted_index.logistic | 64 |
| abstract_inverted_index.patients | 155 |
| abstract_inverted_index.presence | 70 |
| abstract_inverted_index.recorded | 11 |
| abstract_inverted_index.selected | 55 |
| abstract_inverted_index.validate | 28 |
| abstract_inverted_index.AUC=0.81, | 140 |
| abstract_inverted_index.AUC=0.83, | 128 |
| abstract_inverted_index.Materials | 49 |
| abstract_inverted_index.Objective | 1 |
| abstract_inverted_index.PPV=0.90, | 130 |
| abstract_inverted_index.Selective | 191 |
| abstract_inverted_index.clinical, | 110 |
| abstract_inverted_index.combining | 43 |
| abstract_inverted_index.efficient | 198 |
| abstract_inverted_index.learning. | 48 |
| abstract_inverted_index.patients, | 151 |
| abstract_inverted_index.predicted | 156 |
| abstract_inverted_index.rate=0.59 | 133 |
| abstract_inverted_index.rate=0.65 | 145 |
| abstract_inverted_index.selective | 44 |
| abstract_inverted_index.unlabeled | 103, 150 |
| abstract_inverted_index.validated | 98 |
| abstract_inverted_index.variables | 113 |
| abstract_inverted_index.Conclusion | 221 |
| abstract_inverted_index.Discussion | 190 |
| abstract_inverted_index.additional | 102 |
| abstract_inverted_index.electronic | 37 |
| abstract_inverted_index.facilitate | 197 |
| abstract_inverted_index.frequently | 10 |
| abstract_inverted_index.healthcare | 216 |
| abstract_inverted_index.insecurity | 32, 73, 80, 125, 137, 160, 236 |
| abstract_inverted_index.prediction | 45, 192 |
| abstract_inverted_index.regression | 65 |
| abstract_inverted_index.validating | 91 |
| abstract_inverted_index.vulnerable | 211 |
| abstract_inverted_index.(p<0.001 | 187 |
| abstract_inverted_index.Information | 2 |
| abstract_inverted_index.associative | 106 |
| abstract_inverted_index.information | 230 |
| abstract_inverted_index.insecurity. | 121 |
| abstract_inverted_index.p<0.001) | 170 |
| abstract_inverted_index.populations | 212 |
| abstract_inverted_index.predictions | 92, 99 |
| abstract_inverted_index.researchers | 20 |
| abstract_inverted_index.associations | 116 |
| abstract_inverted_index.demographic, | 109 |
| abstract_inverted_index.determinants | 6, 202 |
| abstract_inverted_index.hypertension | 177 |
| abstract_inverted_index.inaccessible | 18 |
| abstract_inverted_index.undetermined | 132, 144 |
| abstract_inverted_index.unstructured | 13, 206 |
| abstract_inverted_index.environmental | 112 |
| abstract_inverted_index.high-fidelity | 229 |
| abstract_inverted_index.intervention. | 220 |
| abstract_inverted_index.policymakers. | 22 |
| abstract_inverted_index.L1-regularized | 63 |
| abstract_inverted_index.record-derived | 39 |
| abstract_inverted_index.Hispanic/Latino | 166 |
| abstract_inverted_index.sensitivity=0.50, | 141 |
| abstract_inverted_index.sensitivity=0.90, | 129 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5046725885 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 11 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/1 |
| sustainable_development_goals[0].score | 0.5799999833106995 |
| sustainable_development_goals[0].display_name | No poverty |
| citation_normalized_percentile.value | 0.27539152 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |