Extraction of Edge-type and Anomaly-type Lineaments Based on Directional Continuous Wavelet Transform Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.51244/ijrsi.2025.1210000340
Background Lineaments can be expressed as linear features which are notably brighter or darker than background (anomaly-type) and suddenly changed in brightness (edge-type) in the remote sensing (RS) and digital elevation model (DEM) images. A new method is proposed to extract both types of lineaments from RS and DEM images based on directional continuous wavelet transform (CWT). The method consists of three steps: (i) determination of omni-directional CWT coefficient concerned with image gradient magnitude and omni-direction image reflecting image gradient direction using multi-directional CWT coefficients, (ii) extraction of image features such as extrema and edges using CWT modulus maxima line and (iii) detection of lineaments through segmentation and linkage of image features and linearization of image feature segments. The omni-directional CWT and omni-direction image determined from multi-directional CWT coefficients are associated with image gradient to be applied to image feature extraction, segmentation and linkage. The positive and negative lineaments can also be detected by the method. The proposed method is tested using a simple example image and compared with the Hough transform (HT) method and applied to real RS and DEM images to extract both types of lineaments, which are compared with real geological structures including faults. The results show the proposed method is superior to the HT method and effective in detection of lineaments reflecting geological structures which are roughly rectilinear and expressed at multiple scales and directions.
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.51244/ijrsi.2025.1210000340
- https://rsisinternational.org/journals/ijrsi/uploads/vol12-iss10-pg3945-3953-202511_pdf.pdf
- OA Status
- bronze
- OpenAlex ID
- https://openalex.org/W7106223374
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7106223374Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.51244/ijrsi.2025.1210000340Digital Object Identifier
- Title
-
Extraction of Edge-type and Anomaly-type Lineaments Based on Directional Continuous Wavelet TransformWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-22Full publication date if available
- Authors
-
Man Hyok Song, Song Lyu, Chol Yong OList of authors in order
- Landing page
-
https://doi.org/10.51244/ijrsi.2025.1210000340Publisher landing page
- PDF URL
-
https://rsisinternational.org/journals/ijrsi/uploads/vol12-iss10-pg3945-3953-202511_pdf.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://rsisinternational.org/journals/ijrsi/uploads/vol12-iss10-pg3945-3953-202511_pdf.pdfDirect OA link when available
- Concepts
-
Artificial intelligence, Hough transform, Lineament, Wavelet transform, Computer vision, Pattern recognition (psychology), Continuous wavelet transform, Feature (linguistics), Image gradient, Feature extraction, Wavelet, Feature detection (computer vision), Image processing, Image segmentation, Binary image, Top-hat transform, Pyramid (geometry), Mathematics, Image (mathematics), Morphological gradient, Phase congruency, Digital image, Segmentation, Maxima and minima, Image texture, Computer science, Line (geometry), Geology, Discrete wavelet transform, Gradient method, Stationary wavelet transformTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7106223374 |
|---|---|
| doi | https://doi.org/10.51244/ijrsi.2025.1210000340 |
| ids.doi | https://doi.org/10.51244/ijrsi.2025.1210000340 |
| ids.openalex | https://openalex.org/W7106223374 |
| fwci | 0.0 |
| type | article |
| title | Extraction of Edge-type and Anomaly-type Lineaments Based on Directional Continuous Wavelet Transform |
| biblio.issue | 10 |
| biblio.volume | 12 |
| biblio.last_page | 3953 |
| biblio.first_page | 3945 |
| topics[0].id | https://openalex.org/T12543 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9803265333175659 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Groundwater and Watershed Analysis |
| topics[1].id | https://openalex.org/T10572 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.0018071788363158703 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1908 |
| topics[1].subfield.display_name | Geophysics |
| topics[1].display_name | Geophysical and Geoelectrical Methods |
| topics[2].id | https://openalex.org/T12293 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.0013327156193554401 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Dam Engineering and Safety |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6675533652305603 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C200518788 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5568722486495972 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q195076 |
| concepts[1].display_name | Hough transform |
| concepts[2].id | https://openalex.org/C92596616 |
| concepts[2].level | 3 |
| concepts[2].score | 0.533668041229248 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1826413 |
| concepts[2].display_name | Lineament |
| concepts[3].id | https://openalex.org/C196216189 |
| concepts[3].level | 3 |
| concepts[3].score | 0.530544638633728 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2867 |
| concepts[3].display_name | Wavelet transform |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5203699469566345 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.47914597392082214 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C95722684 |
| concepts[6].level | 5 |
| concepts[6].score | 0.4511655569076538 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2622756 |
| concepts[6].display_name | Continuous wavelet transform |
| concepts[7].id | https://openalex.org/C2776401178 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4265258312225342 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[7].display_name | Feature (linguistics) |
| concepts[8].id | https://openalex.org/C182037307 |
| concepts[8].level | 5 |
| concepts[8].score | 0.41474100947380066 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q17039097 |
| concepts[8].display_name | Image gradient |
| concepts[9].id | https://openalex.org/C52622490 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41280749440193176 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[9].display_name | Feature extraction |
| concepts[10].id | https://openalex.org/C47432892 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4064088463783264 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q831390 |
| concepts[10].display_name | Wavelet |
| concepts[11].id | https://openalex.org/C126422989 |
| concepts[11].level | 4 |
| concepts[11].score | 0.3974821865558624 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q93586 |
| concepts[11].display_name | Feature detection (computer vision) |
| concepts[12].id | https://openalex.org/C9417928 |
| concepts[12].level | 3 |
| concepts[12].score | 0.39392030239105225 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1070689 |
| concepts[12].display_name | Image processing |
| concepts[13].id | https://openalex.org/C124504099 |
| concepts[13].level | 3 |
| concepts[13].score | 0.39256012439727783 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[13].display_name | Image segmentation |
| concepts[14].id | https://openalex.org/C193828747 |
| concepts[14].level | 4 |
| concepts[14].score | 0.3657844364643097 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q864118 |
| concepts[14].display_name | Binary image |
| concepts[15].id | https://openalex.org/C180064427 |
| concepts[15].level | 5 |
| concepts[15].score | 0.3618270754814148 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2880017 |
| concepts[15].display_name | Top-hat transform |
| concepts[16].id | https://openalex.org/C142575187 |
| concepts[16].level | 2 |
| concepts[16].score | 0.3483036160469055 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q3358290 |
| concepts[16].display_name | Pyramid (geometry) |
| concepts[17].id | https://openalex.org/C33923547 |
| concepts[17].level | 0 |
| concepts[17].score | 0.34511318802833557 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[17].display_name | Mathematics |
| concepts[18].id | https://openalex.org/C115961682 |
| concepts[18].level | 2 |
| concepts[18].score | 0.3413422107696533 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[18].display_name | Image (mathematics) |
| concepts[19].id | https://openalex.org/C96133863 |
| concepts[19].level | 5 |
| concepts[19].score | 0.32452601194381714 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q6913458 |
| concepts[19].display_name | Morphological gradient |
| concepts[20].id | https://openalex.org/C2777316791 |
| concepts[20].level | 3 |
| concepts[20].score | 0.3160178065299988 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q17105246 |
| concepts[20].display_name | Phase congruency |
| concepts[21].id | https://openalex.org/C42781572 |
| concepts[21].level | 4 |
| concepts[21].score | 0.3018167018890381 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q1250322 |
| concepts[21].display_name | Digital image |
| concepts[22].id | https://openalex.org/C89600930 |
| concepts[22].level | 2 |
| concepts[22].score | 0.2999829947948456 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[22].display_name | Segmentation |
| concepts[23].id | https://openalex.org/C186633575 |
| concepts[23].level | 2 |
| concepts[23].score | 0.2979923188686371 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q845060 |
| concepts[23].display_name | Maxima and minima |
| concepts[24].id | https://openalex.org/C63099799 |
| concepts[24].level | 4 |
| concepts[24].score | 0.27195531129837036 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q17147001 |
| concepts[24].display_name | Image texture |
| concepts[25].id | https://openalex.org/C41008148 |
| concepts[25].level | 0 |
| concepts[25].score | 0.26802313327789307 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[25].display_name | Computer science |
| concepts[26].id | https://openalex.org/C198352243 |
| concepts[26].level | 2 |
| concepts[26].score | 0.25633540749549866 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q37105 |
| concepts[26].display_name | Line (geometry) |
| concepts[27].id | https://openalex.org/C127313418 |
| concepts[27].level | 0 |
| concepts[27].score | 0.2548447549343109 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[27].display_name | Geology |
| concepts[28].id | https://openalex.org/C46286280 |
| concepts[28].level | 4 |
| concepts[28].score | 0.25339317321777344 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q2414958 |
| concepts[28].display_name | Discrete wavelet transform |
| concepts[29].id | https://openalex.org/C115680565 |
| concepts[29].level | 2 |
| concepts[29].score | 0.25222668051719666 |
| concepts[29].wikidata | https://www.wikidata.org/wiki/Q5977448 |
| concepts[29].display_name | Gradient method |
| concepts[30].id | https://openalex.org/C73339587 |
| concepts[30].level | 5 |
| concepts[30].score | 0.2510933578014374 |
| concepts[30].wikidata | https://www.wikidata.org/wiki/Q1375942 |
| concepts[30].display_name | Stationary wavelet transform |
| keywords[0].id | https://openalex.org/keywords/hough-transform |
| keywords[0].score | 0.5568722486495972 |
| keywords[0].display_name | Hough transform |
| keywords[1].id | https://openalex.org/keywords/lineament |
| keywords[1].score | 0.533668041229248 |
| keywords[1].display_name | Lineament |
| keywords[2].id | https://openalex.org/keywords/wavelet-transform |
| keywords[2].score | 0.530544638633728 |
| keywords[2].display_name | Wavelet transform |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.47914597392082214 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/continuous-wavelet-transform |
| keywords[4].score | 0.4511655569076538 |
| keywords[4].display_name | Continuous wavelet transform |
| keywords[5].id | https://openalex.org/keywords/feature |
| keywords[5].score | 0.4265258312225342 |
| keywords[5].display_name | Feature (linguistics) |
| keywords[6].id | https://openalex.org/keywords/image-gradient |
| keywords[6].score | 0.41474100947380066 |
| keywords[6].display_name | Image gradient |
| keywords[7].id | https://openalex.org/keywords/feature-extraction |
| keywords[7].score | 0.41280749440193176 |
| keywords[7].display_name | Feature extraction |
| keywords[8].id | https://openalex.org/keywords/wavelet |
| keywords[8].score | 0.4064088463783264 |
| keywords[8].display_name | Wavelet |
| language | |
| locations[0].id | doi:10.51244/ijrsi.2025.1210000340 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172017 |
| locations[0].source.issn | 2320-5520, 2321-2705 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2320-5520 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International journal of research and scientific innovation |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | |
| locations[0].license | |
| locations[0].pdf_url | https://rsisinternational.org/journals/ijrsi/uploads/vol12-iss10-pg3945-3953-202511_pdf.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Research and Scientific Innovation |
| locations[0].landing_page_url | https://doi.org/10.51244/ijrsi.2025.1210000340 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A3045680681 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5764-3918 |
| authorships[0].author.display_name | Man Hyok Song |
| authorships[0].countries | KP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I344333522 |
| authorships[0].affiliations[0].raw_affiliation_string | Faculty of Earth Science and Technology, Kim Chaek University of Technology, City-Pyongyang, State-DPR of Korea |
| authorships[0].institutions[0].id | https://openalex.org/I344333522 |
| authorships[0].institutions[0].ror | https://ror.org/https://ror.org/04vew1z32 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I344333522 |
| authorships[0].institutions[0].country_code | KP |
| authorships[0].institutions[0].display_name | Kim Chaek University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Man Hyok Song |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Faculty of Earth Science and Technology, Kim Chaek University of Technology, City-Pyongyang, State-DPR of Korea |
| authorships[1].author.id | https://openalex.org/A2922379790 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5999-7090 |
| authorships[1].author.display_name | Song Lyu |
| authorships[1].countries | KP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I344333522 |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of Earth Science and Technology, Kim Chaek University of Technology, City-Pyongyang, State-DPR of Korea |
| authorships[1].institutions[0].id | https://openalex.org/I344333522 |
| authorships[1].institutions[0].ror | https://ror.org/https://ror.org/04vew1z32 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I344333522 |
| authorships[1].institutions[0].country_code | KP |
| authorships[1].institutions[0].display_name | Kim Chaek University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Song Lyu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Faculty of Earth Science and Technology, Kim Chaek University of Technology, City-Pyongyang, State-DPR of Korea |
| authorships[2].author.id | |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Chol Yong O |
| authorships[2].countries | KP |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I344333522 |
| authorships[2].affiliations[0].raw_affiliation_string | Faculty of Earth Science and Technology, Kim Chaek University of Technology, City-Pyongyang, State-DPR of Korea |
| authorships[2].institutions[0].id | https://openalex.org/I344333522 |
| authorships[2].institutions[0].ror | https://ror.org/https://ror.org/04vew1z32 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I344333522 |
| authorships[2].institutions[0].country_code | KP |
| authorships[2].institutions[0].display_name | Kim Chaek University of Technology |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Chol Yong O |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Faculty of Earth Science and Technology, Kim Chaek University of Technology, City-Pyongyang, State-DPR of Korea |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://rsisinternational.org/journals/ijrsi/uploads/vol12-iss10-pg3945-3953-202511_pdf.pdf |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-23T00:00:00 |
| display_name | Extraction of Edge-type and Anomaly-type Lineaments Based on Directional Continuous Wavelet Transform |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-23T23:15:26.331081 |
| primary_topic.id | https://openalex.org/T12543 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9803265333175659 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Groundwater and Watershed Analysis |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.51244/ijrsi.2025.1210000340 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172017 |
| best_oa_location.source.issn | 2320-5520, 2321-2705 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2320-5520 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International journal of research and scientific innovation |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://rsisinternational.org/journals/ijrsi/uploads/vol12-iss10-pg3945-3953-202511_pdf.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Research and Scientific Innovation |
| best_oa_location.landing_page_url | https://doi.org/10.51244/ijrsi.2025.1210000340 |
| primary_location.id | doi:10.51244/ijrsi.2025.1210000340 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172017 |
| primary_location.source.issn | 2320-5520, 2321-2705 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2320-5520 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International journal of research and scientific innovation |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | |
| primary_location.license | |
| primary_location.pdf_url | https://rsisinternational.org/journals/ijrsi/uploads/vol12-iss10-pg3945-3953-202511_pdf.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Research and Scientific Innovation |
| primary_location.landing_page_url | https://doi.org/10.51244/ijrsi.2025.1210000340 |
| publication_date | 2025-11-22 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 35 |
| abstract_inverted_index.a | 163 |
| abstract_inverted_index.HT | 208 |
| abstract_inverted_index.RS | 47, 179 |
| abstract_inverted_index.as | 6, 92 |
| abstract_inverted_index.at | 225 |
| abstract_inverted_index.be | 4, 136, 152 |
| abstract_inverted_index.by | 154 |
| abstract_inverted_index.in | 21, 24, 212 |
| abstract_inverted_index.is | 38, 160, 204 |
| abstract_inverted_index.of | 44, 61, 66, 88, 104, 110, 115, 187, 214 |
| abstract_inverted_index.on | 52 |
| abstract_inverted_index.or | 13 |
| abstract_inverted_index.to | 40, 135, 138, 177, 183, 206 |
| abstract_inverted_index.(i) | 64 |
| abstract_inverted_index.CWT | 68, 84, 97, 121, 128 |
| abstract_inverted_index.DEM | 49, 181 |
| abstract_inverted_index.The | 58, 119, 145, 157, 198 |
| abstract_inverted_index.and | 18, 29, 48, 75, 94, 101, 108, 113, 122, 143, 147, 167, 175, 180, 210, 223, 228 |
| abstract_inverted_index.are | 10, 130, 190, 220 |
| abstract_inverted_index.can | 3, 150 |
| abstract_inverted_index.new | 36 |
| abstract_inverted_index.the | 25, 155, 170, 201, 207 |
| abstract_inverted_index.(HT) | 173 |
| abstract_inverted_index.(RS) | 28 |
| abstract_inverted_index.(ii) | 86 |
| abstract_inverted_index.also | 151 |
| abstract_inverted_index.both | 42, 185 |
| abstract_inverted_index.from | 46, 126 |
| abstract_inverted_index.line | 100 |
| abstract_inverted_index.real | 178, 193 |
| abstract_inverted_index.show | 200 |
| abstract_inverted_index.such | 91 |
| abstract_inverted_index.than | 15 |
| abstract_inverted_index.with | 71, 132, 169, 192 |
| abstract_inverted_index.(DEM) | 33 |
| abstract_inverted_index.(iii) | 102 |
| abstract_inverted_index.Hough | 171 |
| abstract_inverted_index.based | 51 |
| abstract_inverted_index.edges | 95 |
| abstract_inverted_index.image | 72, 77, 79, 89, 111, 116, 124, 133, 139, 166 |
| abstract_inverted_index.model | 32 |
| abstract_inverted_index.three | 62 |
| abstract_inverted_index.types | 43, 186 |
| abstract_inverted_index.using | 82, 96, 162 |
| abstract_inverted_index.which | 9, 189, 219 |
| abstract_inverted_index.(CWT). | 57 |
| abstract_inverted_index.darker | 14 |
| abstract_inverted_index.images | 50, 182 |
| abstract_inverted_index.linear | 7 |
| abstract_inverted_index.maxima | 99 |
| abstract_inverted_index.method | 37, 59, 159, 174, 203, 209 |
| abstract_inverted_index.remote | 26 |
| abstract_inverted_index.scales | 227 |
| abstract_inverted_index.simple | 164 |
| abstract_inverted_index.steps: | 63 |
| abstract_inverted_index.tested | 161 |
| abstract_inverted_index.applied | 137, 176 |
| abstract_inverted_index.changed | 20 |
| abstract_inverted_index.digital | 30 |
| abstract_inverted_index.example | 165 |
| abstract_inverted_index.extract | 41, 184 |
| abstract_inverted_index.extrema | 93 |
| abstract_inverted_index.faults. | 197 |
| abstract_inverted_index.feature | 117, 140 |
| abstract_inverted_index.images. | 34 |
| abstract_inverted_index.linkage | 109 |
| abstract_inverted_index.method. | 156 |
| abstract_inverted_index.modulus | 98 |
| abstract_inverted_index.notably | 11 |
| abstract_inverted_index.results | 199 |
| abstract_inverted_index.roughly | 221 |
| abstract_inverted_index.sensing | 27 |
| abstract_inverted_index.through | 106 |
| abstract_inverted_index.wavelet | 55 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.brighter | 12 |
| abstract_inverted_index.compared | 168, 191 |
| abstract_inverted_index.consists | 60 |
| abstract_inverted_index.detected | 153 |
| abstract_inverted_index.features | 8, 90, 112 |
| abstract_inverted_index.gradient | 73, 80, 134 |
| abstract_inverted_index.linkage. | 144 |
| abstract_inverted_index.multiple | 226 |
| abstract_inverted_index.negative | 148 |
| abstract_inverted_index.positive | 146 |
| abstract_inverted_index.proposed | 39, 158, 202 |
| abstract_inverted_index.suddenly | 19 |
| abstract_inverted_index.superior | 205 |
| abstract_inverted_index.concerned | 70 |
| abstract_inverted_index.detection | 103, 213 |
| abstract_inverted_index.direction | 81 |
| abstract_inverted_index.effective | 211 |
| abstract_inverted_index.elevation | 31 |
| abstract_inverted_index.expressed | 5, 224 |
| abstract_inverted_index.including | 196 |
| abstract_inverted_index.magnitude | 74 |
| abstract_inverted_index.segments. | 118 |
| abstract_inverted_index.transform | 56, 172 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.Lineaments | 2 |
| abstract_inverted_index.associated | 131 |
| abstract_inverted_index.background | 16 |
| abstract_inverted_index.brightness | 22 |
| abstract_inverted_index.continuous | 54 |
| abstract_inverted_index.determined | 125 |
| abstract_inverted_index.extraction | 87 |
| abstract_inverted_index.geological | 194, 217 |
| abstract_inverted_index.lineaments | 45, 105, 149, 215 |
| abstract_inverted_index.reflecting | 78, 216 |
| abstract_inverted_index.structures | 195, 218 |
| abstract_inverted_index.(edge-type) | 23 |
| abstract_inverted_index.coefficient | 69 |
| abstract_inverted_index.directional | 53 |
| abstract_inverted_index.directions. | 229 |
| abstract_inverted_index.extraction, | 141 |
| abstract_inverted_index.lineaments, | 188 |
| abstract_inverted_index.rectilinear | 222 |
| abstract_inverted_index.coefficients | 129 |
| abstract_inverted_index.segmentation | 107, 142 |
| abstract_inverted_index.coefficients, | 85 |
| abstract_inverted_index.determination | 65 |
| abstract_inverted_index.linearization | 114 |
| abstract_inverted_index.(anomaly-type) | 17 |
| abstract_inverted_index.omni-direction | 76, 123 |
| abstract_inverted_index.omni-directional | 67, 120 |
| abstract_inverted_index.multi-directional | 83, 127 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.73407552 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |