Extrinsic Behavior Prediction of Pedestrians via Maximum Entropy Markov Model and Graph-Based Features Mining Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/app12125985
With the change of technology and innovation of the current era, retrieving data and data processing becomes a more challenging task for researchers. In particular, several types of sensors and cameras are used to collect multimedia data from various resources and domains, which have been used in different domains and platforms to analyze things such as educational and communicational setups, emergency services, and surveillance systems. In this paper, we propose a robust method to predict human behavior from indoor and outdoor crowd environments. While taking the crowd-based data as input, some preprocessing steps for noise reduction are performed. Then, human silhouettes are extracted that eventually help in the identification of human beings. After that, crowd analysis and crowd clustering are applied for more accurate and clear predictions. This step is followed by features extraction in which the deep flow, force interaction matrix and force flow features are extracted. Moreover, we applied the graph mining technique for data optimization, while the maximum entropy Markov model is applied for classification and predictions. The evaluation of the proposed system showed 87% of mean accuracy and 13% of error rate for the avenue dataset, while 89.50% of mean accuracy rate and 10.50% of error rate for the University of Minnesota (UMN) dataset. In addition, it showed a 90.50 mean accuracy rate and 9.50% of error rate for the A Day on Campus (ADOC) dataset. Therefore, these results showed a better accuracy rate and low error rate compared to state-of-the-art methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/app12125985
- https://www.mdpi.com/2076-3417/12/12/5985/pdf?version=1655081530
- OA Status
- gold
- Cited By
- 20
- References
- 62
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4282599641
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4282599641Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/app12125985Digital Object Identifier
- Title
-
Extrinsic Behavior Prediction of Pedestrians via Maximum Entropy Markov Model and Graph-Based Features MiningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-06-12Full publication date if available
- Authors
-
Yazeed Yasin Ghadi, Israr Akhter, Hanan Aljuaid, Munkhjargal Gochoo, Suliman A. Alsuhibany, Ahmad Jalal, Jeongmin ParkList of authors in order
- Landing page
-
https://doi.org/10.3390/app12125985Publisher landing page
- PDF URL
-
https://www.mdpi.com/2076-3417/12/12/5985/pdf?version=1655081530Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2076-3417/12/12/5985/pdf?version=1655081530Direct OA link when available
- Concepts
-
Computer science, Preprocessor, Word error rate, Entropy (arrow of time), Data mining, Graph, Data pre-processing, Hidden Markov model, Artificial intelligence, Markov chain, Pattern recognition (psychology), Machine learning, Theoretical computer science, Quantum mechanics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
20Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 6, 2023: 6, 2022: 6Per-year citation counts (last 5 years)
- References (count)
-
62Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4282599641 |
|---|---|
| doi | https://doi.org/10.3390/app12125985 |
| ids.doi | https://doi.org/10.3390/app12125985 |
| ids.openalex | https://openalex.org/W4282599641 |
| fwci | 3.91597641 |
| type | article |
| title | Extrinsic Behavior Prediction of Pedestrians via Maximum Entropy Markov Model and Graph-Based Features Mining |
| biblio.issue | 12 |
| biblio.volume | 12 |
| biblio.last_page | 5985 |
| biblio.first_page | 5985 |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T10331 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9984999895095825 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Video Surveillance and Tracking Methods |
| topics[2].id | https://openalex.org/T12740 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9850999712944031 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Gait Recognition and Analysis |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2300 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7495858669281006 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C34736171 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6560942530632019 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q918333 |
| concepts[1].display_name | Preprocessor |
| concepts[2].id | https://openalex.org/C40969351 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5866544246673584 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3516228 |
| concepts[2].display_name | Word error rate |
| concepts[3].id | https://openalex.org/C106301342 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5217036604881287 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4117933 |
| concepts[3].display_name | Entropy (arrow of time) |
| concepts[4].id | https://openalex.org/C124101348 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5210530161857605 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[4].display_name | Data mining |
| concepts[5].id | https://openalex.org/C132525143 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48048725724220276 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[5].display_name | Graph |
| concepts[6].id | https://openalex.org/C10551718 |
| concepts[6].level | 2 |
| concepts[6].score | 0.47701287269592285 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5227332 |
| concepts[6].display_name | Data pre-processing |
| concepts[7].id | https://openalex.org/C23224414 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45590940117836 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q176769 |
| concepts[7].display_name | Hidden Markov model |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4349084496498108 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C98763669 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42282554507255554 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q176645 |
| concepts[9].display_name | Markov chain |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3813655972480774 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.30045145750045776 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C80444323 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[12].display_name | Theoretical computer science |
| concepts[13].id | https://openalex.org/C62520636 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[13].display_name | Quantum mechanics |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7495858669281006 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/preprocessor |
| keywords[1].score | 0.6560942530632019 |
| keywords[1].display_name | Preprocessor |
| keywords[2].id | https://openalex.org/keywords/word-error-rate |
| keywords[2].score | 0.5866544246673584 |
| keywords[2].display_name | Word error rate |
| keywords[3].id | https://openalex.org/keywords/entropy |
| keywords[3].score | 0.5217036604881287 |
| keywords[3].display_name | Entropy (arrow of time) |
| keywords[4].id | https://openalex.org/keywords/data-mining |
| keywords[4].score | 0.5210530161857605 |
| keywords[4].display_name | Data mining |
| keywords[5].id | https://openalex.org/keywords/graph |
| keywords[5].score | 0.48048725724220276 |
| keywords[5].display_name | Graph |
| keywords[6].id | https://openalex.org/keywords/data-pre-processing |
| keywords[6].score | 0.47701287269592285 |
| keywords[6].display_name | Data pre-processing |
| keywords[7].id | https://openalex.org/keywords/hidden-markov-model |
| keywords[7].score | 0.45590940117836 |
| keywords[7].display_name | Hidden Markov model |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.4349084496498108 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/markov-chain |
| keywords[9].score | 0.42282554507255554 |
| keywords[9].display_name | Markov chain |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.3813655972480774 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.30045145750045776 |
| keywords[11].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.3390/app12125985 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205812 |
| locations[0].source.issn | 2076-3417 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2076-3417 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Applied Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2076-3417/12/12/5985/pdf?version=1655081530 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.3390/app12125985 |
| locations[1].id | pmh:oai:doaj.org/article:fdb5fa904fb94056a4ff2cb3a6da8a56 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Applied Sciences, Vol 12, Iss 12, p 5985 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/fdb5fa904fb94056a4ff2cb3a6da8a56 |
| locations[2].id | pmh:oai:mdpi.com:/2076-3417/12/12/5985/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Applied Sciences; Volume 12; Issue 12; Pages: 5985 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/app12125985 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5091859381 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7121-495X |
| authorships[0].author.display_name | Yazeed Yasin Ghadi |
| authorships[0].countries | AE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I161913731 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science and Software Engineering, Al Ain University, Al Ain 15551, United Arab Emirates |
| authorships[0].institutions[0].id | https://openalex.org/I161913731 |
| authorships[0].institutions[0].ror | https://ror.org/023abrt21 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I161913731 |
| authorships[0].institutions[0].country_code | AE |
| authorships[0].institutions[0].display_name | Al Ain University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yazeed Yasin Ghadi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Software Engineering, Al Ain University, Al Ain 15551, United Arab Emirates |
| authorships[1].author.id | https://openalex.org/A5056565300 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0326-8208 |
| authorships[1].author.display_name | Israr Akhter |
| authorships[1].countries | PK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I899713450 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science, Air University, Islamabad 44000, Pakistan |
| authorships[1].institutions[0].id | https://openalex.org/I899713450 |
| authorships[1].institutions[0].ror | https://ror.org/03yfe9v83 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I899713450 |
| authorships[1].institutions[0].country_code | PK |
| authorships[1].institutions[0].display_name | Air University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Israr Akhter |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science, Air University, Islamabad 44000, Pakistan |
| authorships[2].author.id | https://openalex.org/A5077398703 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6042-0283 |
| authorships[2].author.display_name | Hanan Aljuaid |
| authorships[2].countries | SA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I106778892 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia |
| authorships[2].institutions[0].id | https://openalex.org/I106778892 |
| authorships[2].institutions[0].ror | https://ror.org/05b0cyh02 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I106778892 |
| authorships[2].institutions[0].country_code | SA |
| authorships[2].institutions[0].display_name | Princess Nourah bint Abdulrahman University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hanan Aljuaid |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia |
| authorships[3].author.id | https://openalex.org/A5025216905 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6613-7435 |
| authorships[3].author.display_name | Munkhjargal Gochoo |
| authorships[3].countries | AE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I201726411 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science and Software Engineering, United Arab Emirates University, Al Ain 15551, United Arab Emirates |
| authorships[3].institutions[0].id | https://openalex.org/I201726411 |
| authorships[3].institutions[0].ror | https://ror.org/01km6p862 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I201726411 |
| authorships[3].institutions[0].country_code | AE |
| authorships[3].institutions[0].display_name | United Arab Emirates University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Munkhjargal Gochoo |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science and Software Engineering, United Arab Emirates University, Al Ain 15551, United Arab Emirates |
| authorships[4].author.id | https://openalex.org/A5066133756 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7735-9781 |
| authorships[4].author.display_name | Suliman A. Alsuhibany |
| authorships[4].countries | SA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I156216236 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Science, College of Computer, Qassim University, Buraydah 51452, Saudi Arabia |
| authorships[4].institutions[0].id | https://openalex.org/I156216236 |
| authorships[4].institutions[0].ror | https://ror.org/01wsfe280 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I156216236 |
| authorships[4].institutions[0].country_code | SA |
| authorships[4].institutions[0].display_name | Qassim University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Suliman A. Alsuhibany |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Science, College of Computer, Qassim University, Buraydah 51452, Saudi Arabia |
| authorships[5].author.id | https://openalex.org/A5072951124 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6998-3784 |
| authorships[5].author.display_name | Ahmad Jalal |
| authorships[5].countries | PK |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I899713450 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Computer Science, Air University, Islamabad 44000, Pakistan |
| authorships[5].institutions[0].id | https://openalex.org/I899713450 |
| authorships[5].institutions[0].ror | https://ror.org/03yfe9v83 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I899713450 |
| authorships[5].institutions[0].country_code | PK |
| authorships[5].institutions[0].display_name | Air University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ahmad Jalal |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Computer Science, Air University, Islamabad 44000, Pakistan |
| authorships[6].author.id | https://openalex.org/A5100776534 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8027-0876 |
| authorships[6].author.display_name | Jeongmin Park |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Computer Engineering, Tech University of Korea, 237 Sangidaehak-ro, Siheung-si 15073, Gyeonggi-do, Korea |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Jeongmin Park |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Department of Computer Engineering, Tech University of Korea, 237 Sangidaehak-ro, Siheung-si 15073, Gyeonggi-do, Korea |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2076-3417/12/12/5985/pdf?version=1655081530 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-06-14T00:00:00 |
| display_name | Extrinsic Behavior Prediction of Pedestrians via Maximum Entropy Markov Model and Graph-Based Features Mining |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W2989490741, https://openalex.org/W3092506759, https://openalex.org/W2367545121, https://openalex.org/W4248881655, https://openalex.org/W2482165163, https://openalex.org/W3010890513, https://openalex.org/W120741642, https://openalex.org/W138569904, https://openalex.org/W2390914021, https://openalex.org/W2389417819 |
| cited_by_count | 20 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 6 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 6 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/app12125985 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205812 |
| best_oa_location.source.issn | 2076-3417 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2076-3417 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Applied Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2076-3417/12/12/5985/pdf?version=1655081530 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.3390/app12125985 |
| primary_location.id | doi:10.3390/app12125985 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205812 |
| primary_location.source.issn | 2076-3417 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2076-3417 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Applied Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2076-3417/12/12/5985/pdf?version=1655081530 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.3390/app12125985 |
| publication_date | 2022-06-12 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W1559083155, https://openalex.org/W2914340986, https://openalex.org/W2284111848, https://openalex.org/W1962468782, https://openalex.org/W2172207578, https://openalex.org/W3121874414, https://openalex.org/W3001163539, https://openalex.org/W3110610882, https://openalex.org/W2806490840, https://openalex.org/W2947930228, https://openalex.org/W3007751154, https://openalex.org/W2909218472, https://openalex.org/W6640267182, https://openalex.org/W6637852806, https://openalex.org/W6677167005, https://openalex.org/W2101668106, https://openalex.org/W2114925581, https://openalex.org/W2128728535, https://openalex.org/W2805310212, https://openalex.org/W3039222472, https://openalex.org/W3018260187, https://openalex.org/W2082418604, https://openalex.org/W2095368471, https://openalex.org/W2156521045, https://openalex.org/W2301943589, https://openalex.org/W2098984471, https://openalex.org/W2001806303, https://openalex.org/W2499581503, https://openalex.org/W1987463078, https://openalex.org/W1999499433, https://openalex.org/W2467658295, https://openalex.org/W1915132083, https://openalex.org/W2502397586, https://openalex.org/W3108642393, https://openalex.org/W2113131123, https://openalex.org/W2065301447, https://openalex.org/W6626151884, https://openalex.org/W2161530198, https://openalex.org/W2892131400, https://openalex.org/W2006982476, https://openalex.org/W3156292869, https://openalex.org/W2295033587, https://openalex.org/W1995407137, https://openalex.org/W2085761620, https://openalex.org/W1984798172, https://openalex.org/W2163612318, https://openalex.org/W2164489414, https://openalex.org/W3109624656, https://openalex.org/W3153753207, https://openalex.org/W6667867682, https://openalex.org/W3217668285, https://openalex.org/W3134305571, https://openalex.org/W2553597291, https://openalex.org/W2602388965, https://openalex.org/W2606538621, https://openalex.org/W2904013130, https://openalex.org/W2987228832, https://openalex.org/W2987146532, https://openalex.org/W2579718262, https://openalex.org/W1934019294, https://openalex.org/W996507331, https://openalex.org/W2069375627 |
| referenced_works_count | 62 |
| abstract_inverted_index.A | 224 |
| abstract_inverted_index.a | 17, 70, 212, 234 |
| abstract_inverted_index.In | 23, 65, 208 |
| abstract_inverted_index.as | 55, 88 |
| abstract_inverted_index.by | 131 |
| abstract_inverted_index.in | 46, 106, 134 |
| abstract_inverted_index.is | 129, 164 |
| abstract_inverted_index.it | 210 |
| abstract_inverted_index.of | 3, 7, 27, 109, 172, 178, 183, 192, 198, 204, 219 |
| abstract_inverted_index.on | 226 |
| abstract_inverted_index.to | 33, 51, 73, 243 |
| abstract_inverted_index.we | 68, 149 |
| abstract_inverted_index.13% | 182 |
| abstract_inverted_index.87% | 177 |
| abstract_inverted_index.Day | 225 |
| abstract_inverted_index.The | 170 |
| abstract_inverted_index.and | 5, 13, 29, 40, 49, 57, 62, 79, 116, 124, 142, 168, 181, 196, 217, 238 |
| abstract_inverted_index.are | 31, 96, 101, 119, 146 |
| abstract_inverted_index.for | 21, 93, 121, 155, 166, 186, 201, 222 |
| abstract_inverted_index.low | 239 |
| abstract_inverted_index.the | 1, 8, 85, 107, 136, 151, 159, 173, 187, 202, 223 |
| abstract_inverted_index.This | 127 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.been | 44 |
| abstract_inverted_index.data | 12, 14, 36, 87, 156 |
| abstract_inverted_index.deep | 137 |
| abstract_inverted_index.era, | 10 |
| abstract_inverted_index.flow | 144 |
| abstract_inverted_index.from | 37, 77 |
| abstract_inverted_index.have | 43 |
| abstract_inverted_index.help | 105 |
| abstract_inverted_index.mean | 179, 193, 214 |
| abstract_inverted_index.more | 18, 122 |
| abstract_inverted_index.rate | 185, 195, 200, 216, 221, 237, 241 |
| abstract_inverted_index.some | 90 |
| abstract_inverted_index.step | 128 |
| abstract_inverted_index.such | 54 |
| abstract_inverted_index.task | 20 |
| abstract_inverted_index.that | 103 |
| abstract_inverted_index.this | 66 |
| abstract_inverted_index.used | 32, 45 |
| abstract_inverted_index.(UMN) | 206 |
| abstract_inverted_index.9.50% | 218 |
| abstract_inverted_index.90.50 | 213 |
| abstract_inverted_index.After | 112 |
| abstract_inverted_index.Then, | 98 |
| abstract_inverted_index.While | 83 |
| abstract_inverted_index.clear | 125 |
| abstract_inverted_index.crowd | 81, 114, 117 |
| abstract_inverted_index.error | 184, 199, 220, 240 |
| abstract_inverted_index.flow, | 138 |
| abstract_inverted_index.force | 139, 143 |
| abstract_inverted_index.graph | 152 |
| abstract_inverted_index.human | 75, 99, 110 |
| abstract_inverted_index.model | 163 |
| abstract_inverted_index.noise | 94 |
| abstract_inverted_index.steps | 92 |
| abstract_inverted_index.that, | 113 |
| abstract_inverted_index.these | 231 |
| abstract_inverted_index.types | 26 |
| abstract_inverted_index.which | 42, 135 |
| abstract_inverted_index.while | 158, 190 |
| abstract_inverted_index.(ADOC) | 228 |
| abstract_inverted_index.10.50% | 197 |
| abstract_inverted_index.89.50% | 191 |
| abstract_inverted_index.Campus | 227 |
| abstract_inverted_index.Markov | 162 |
| abstract_inverted_index.avenue | 188 |
| abstract_inverted_index.better | 235 |
| abstract_inverted_index.change | 2 |
| abstract_inverted_index.indoor | 78 |
| abstract_inverted_index.input, | 89 |
| abstract_inverted_index.matrix | 141 |
| abstract_inverted_index.method | 72 |
| abstract_inverted_index.mining | 153 |
| abstract_inverted_index.paper, | 67 |
| abstract_inverted_index.robust | 71 |
| abstract_inverted_index.showed | 176, 211, 233 |
| abstract_inverted_index.system | 175 |
| abstract_inverted_index.taking | 84 |
| abstract_inverted_index.things | 53 |
| abstract_inverted_index.analyze | 52 |
| abstract_inverted_index.applied | 120, 150, 165 |
| abstract_inverted_index.becomes | 16 |
| abstract_inverted_index.beings. | 111 |
| abstract_inverted_index.cameras | 30 |
| abstract_inverted_index.collect | 34 |
| abstract_inverted_index.current | 9 |
| abstract_inverted_index.domains | 48 |
| abstract_inverted_index.entropy | 161 |
| abstract_inverted_index.maximum | 160 |
| abstract_inverted_index.outdoor | 80 |
| abstract_inverted_index.predict | 74 |
| abstract_inverted_index.propose | 69 |
| abstract_inverted_index.results | 232 |
| abstract_inverted_index.sensors | 28 |
| abstract_inverted_index.setups, | 59 |
| abstract_inverted_index.several | 25 |
| abstract_inverted_index.various | 38 |
| abstract_inverted_index.accuracy | 180, 194, 215, 236 |
| abstract_inverted_index.accurate | 123 |
| abstract_inverted_index.analysis | 115 |
| abstract_inverted_index.behavior | 76 |
| abstract_inverted_index.compared | 242 |
| abstract_inverted_index.dataset, | 189 |
| abstract_inverted_index.dataset. | 207, 229 |
| abstract_inverted_index.domains, | 41 |
| abstract_inverted_index.features | 132, 145 |
| abstract_inverted_index.followed | 130 |
| abstract_inverted_index.methods. | 245 |
| abstract_inverted_index.proposed | 174 |
| abstract_inverted_index.systems. | 64 |
| abstract_inverted_index.Minnesota | 205 |
| abstract_inverted_index.Moreover, | 148 |
| abstract_inverted_index.addition, | 209 |
| abstract_inverted_index.different | 47 |
| abstract_inverted_index.emergency | 60 |
| abstract_inverted_index.extracted | 102 |
| abstract_inverted_index.platforms | 50 |
| abstract_inverted_index.reduction | 95 |
| abstract_inverted_index.resources | 39 |
| abstract_inverted_index.services, | 61 |
| abstract_inverted_index.technique | 154 |
| abstract_inverted_index.Therefore, | 230 |
| abstract_inverted_index.University | 203 |
| abstract_inverted_index.clustering | 118 |
| abstract_inverted_index.evaluation | 171 |
| abstract_inverted_index.eventually | 104 |
| abstract_inverted_index.extracted. | 147 |
| abstract_inverted_index.extraction | 133 |
| abstract_inverted_index.innovation | 6 |
| abstract_inverted_index.multimedia | 35 |
| abstract_inverted_index.performed. | 97 |
| abstract_inverted_index.processing | 15 |
| abstract_inverted_index.retrieving | 11 |
| abstract_inverted_index.technology | 4 |
| abstract_inverted_index.challenging | 19 |
| abstract_inverted_index.crowd-based | 86 |
| abstract_inverted_index.educational | 56 |
| abstract_inverted_index.interaction | 140 |
| abstract_inverted_index.particular, | 24 |
| abstract_inverted_index.silhouettes | 100 |
| abstract_inverted_index.predictions. | 126, 169 |
| abstract_inverted_index.researchers. | 22 |
| abstract_inverted_index.surveillance | 63 |
| abstract_inverted_index.environments. | 82 |
| abstract_inverted_index.optimization, | 157 |
| abstract_inverted_index.preprocessing | 91 |
| abstract_inverted_index.classification | 167 |
| abstract_inverted_index.identification | 108 |
| abstract_inverted_index.communicational | 58 |
| abstract_inverted_index.state-of-the-art | 244 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 95 |
| corresponding_author_ids | https://openalex.org/A5100776534, https://openalex.org/A5077398703 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I106778892 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.5899999737739563 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.91999181 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |