FA-Net: A Fuzzy Attention-aided Deep Neural Network for Pneumonia Detection in Chest X-Rays Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2406.15117
Pneumonia is a respiratory infection caused by bacteria, fungi, or viruses. It affects many people, particularly those in developing or underdeveloped nations with high pollution levels, unhygienic living conditions, overcrowding, and insufficient medical infrastructure. Pneumonia can cause pleural effusion, where fluids fill the lungs, leading to respiratory difficulty. Early diagnosis is crucial to ensure effective treatment and increase survival rates. Chest X-ray imaging is the most commonly used method for diagnosing pneumonia. However, visual examination of chest X-rays can be difficult and subjective. In this study, we have developed a computer-aided diagnosis system for automatic pneumonia detection using chest X-ray images. We have used DenseNet-121 and ResNet50 as the backbone for the binary class (pneumonia and normal) and multi-class (bacterial pneumonia, viral pneumonia, and normal) classification tasks, respectively. We have also implemented a channel-specific spatial attention mechanism, called Fuzzy Channel Selective Spatial Attention Module (FCSSAM), to highlight the specific spatial regions of relevant channels while removing the irrelevant channels of the extracted features by the backbone. We evaluated the proposed approach on a publicly available chest X-ray dataset, using binary and multi-class classification setups. Our proposed method achieves accuracy rates of 97.15\% and 79.79\% for the binary and multi-class classification setups, respectively. The results of our proposed method are superior to state-of-the-art (SOTA) methods. The code of the proposed model will be available at: https://github.com/AyushRoy2001/FA-Net.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2406.15117
- https://arxiv.org/pdf/2406.15117
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399991073
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399991073Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2406.15117Digital Object Identifier
- Title
-
FA-Net: A Fuzzy Attention-aided Deep Neural Network for Pneumonia Detection in Chest X-RaysWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-21Full publication date if available
- Authors
-
Ayush Roy, Anurag Bhattacharjee, Diego Oliva, Oscar Ramos-Soto, Francisco Javier Álvarez Padilla, Ram SarkarList of authors in order
- Landing page
-
https://arxiv.org/abs/2406.15117Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2406.15117Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2406.15117Direct OA link when available
- Concepts
-
Artificial neural network, Fuzzy logic, Pneumonia, Artificial intelligence, Computer science, Medicine, Internal medicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399991073 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2406.15117 |
| ids.doi | https://doi.org/10.48550/arxiv.2406.15117 |
| ids.openalex | https://openalex.org/W4399991073 |
| fwci | |
| type | preprint |
| title | FA-Net: A Fuzzy Attention-aided Deep Neural Network for Pneumonia Detection in Chest X-Rays |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11775 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9921000003814697 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | COVID-19 diagnosis using AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C50644808 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5259987115859985 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[0].display_name | Artificial neural network |
| concepts[1].id | https://openalex.org/C58166 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5253372192382812 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q224821 |
| concepts[1].display_name | Fuzzy logic |
| concepts[2].id | https://openalex.org/C2777914695 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5201592445373535 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12192 |
| concepts[2].display_name | Pneumonia |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4481465220451355 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4373881220817566 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C71924100 |
| concepts[5].level | 0 |
| concepts[5].score | 0.32897645235061646 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[5].display_name | Medicine |
| concepts[6].id | https://openalex.org/C126322002 |
| concepts[6].level | 1 |
| concepts[6].score | 0.12551584839820862 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[6].display_name | Internal medicine |
| keywords[0].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[0].score | 0.5259987115859985 |
| keywords[0].display_name | Artificial neural network |
| keywords[1].id | https://openalex.org/keywords/fuzzy-logic |
| keywords[1].score | 0.5253372192382812 |
| keywords[1].display_name | Fuzzy logic |
| keywords[2].id | https://openalex.org/keywords/pneumonia |
| keywords[2].score | 0.5201592445373535 |
| keywords[2].display_name | Pneumonia |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4481465220451355 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4373881220817566 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/medicine |
| keywords[5].score | 0.32897645235061646 |
| keywords[5].display_name | Medicine |
| keywords[6].id | https://openalex.org/keywords/internal-medicine |
| keywords[6].score | 0.12551584839820862 |
| keywords[6].display_name | Internal medicine |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2406.15117 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2406.15117 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2406.15117 |
| locations[1].id | doi:10.48550/arxiv.2406.15117 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2406.15117 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5038226969 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9330-6839 |
| authorships[0].author.display_name | Ayush Roy |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Roy, Ayush |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5104334536 |
| authorships[1].author.orcid | https://orcid.org/0009-0001-4150-1827 |
| authorships[1].author.display_name | Anurag Bhattacharjee |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bhattacharjee, Anurag |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5056251028 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Diego Oliva |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Oliva, Diego |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5015246704 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0598-8017 |
| authorships[3].author.display_name | Oscar Ramos-Soto |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ramos-Soto, Oscar |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5039717677 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0665-5895 |
| authorships[4].author.display_name | Francisco Javier Álvarez Padilla |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Alvarez-Padilla, Francisco J. |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5082599641 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8813-4086 |
| authorships[5].author.display_name | Ram Sarkar |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Sarkar, Ram |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2406.15117 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-06-25T00:00:00 |
| display_name | FA-Net: A Fuzzy Attention-aided Deep Neural Network for Pneumonia Detection in Chest X-Rays |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11775 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9921000003814697 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | COVID-19 diagnosis using AI |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W3031052312, https://openalex.org/W4389568370, https://openalex.org/W3032375762, https://openalex.org/W1995515455, https://openalex.org/W2080531066, https://openalex.org/W3108674512, https://openalex.org/W1506200166, https://openalex.org/W1489783725, https://openalex.org/W2148612803 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2406.15117 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2406.15117 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2406.15117 |
| primary_location.id | pmh:oai:arXiv.org:2406.15117 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2406.15117 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2406.15117 |
| publication_date | 2024-06-21 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 2, 89, 132, 172 |
| abstract_inverted_index.In | 83 |
| abstract_inverted_index.It | 11 |
| abstract_inverted_index.We | 101, 128, 166 |
| abstract_inverted_index.as | 107 |
| abstract_inverted_index.be | 79, 221 |
| abstract_inverted_index.by | 6, 163 |
| abstract_inverted_index.in | 17 |
| abstract_inverted_index.is | 1, 50, 63 |
| abstract_inverted_index.of | 75, 151, 159, 190, 204, 216 |
| abstract_inverted_index.on | 171 |
| abstract_inverted_index.or | 9, 19 |
| abstract_inverted_index.to | 45, 52, 145, 210 |
| abstract_inverted_index.we | 86 |
| abstract_inverted_index.Our | 184 |
| abstract_inverted_index.The | 202, 214 |
| abstract_inverted_index.and | 30, 56, 81, 105, 115, 117, 123, 180, 192, 197 |
| abstract_inverted_index.are | 208 |
| abstract_inverted_index.at: | 223 |
| abstract_inverted_index.can | 35, 78 |
| abstract_inverted_index.for | 69, 93, 110, 194 |
| abstract_inverted_index.our | 205 |
| abstract_inverted_index.the | 42, 64, 108, 111, 147, 156, 160, 164, 168, 195, 217 |
| abstract_inverted_index.also | 130 |
| abstract_inverted_index.code | 215 |
| abstract_inverted_index.fill | 41 |
| abstract_inverted_index.have | 87, 102, 129 |
| abstract_inverted_index.high | 23 |
| abstract_inverted_index.many | 13 |
| abstract_inverted_index.most | 65 |
| abstract_inverted_index.this | 84 |
| abstract_inverted_index.used | 67, 103 |
| abstract_inverted_index.will | 220 |
| abstract_inverted_index.with | 22 |
| abstract_inverted_index.Chest | 60 |
| abstract_inverted_index.Early | 48 |
| abstract_inverted_index.Fuzzy | 138 |
| abstract_inverted_index.X-ray | 61, 99, 176 |
| abstract_inverted_index.cause | 36 |
| abstract_inverted_index.chest | 76, 98, 175 |
| abstract_inverted_index.class | 113 |
| abstract_inverted_index.model | 219 |
| abstract_inverted_index.rates | 189 |
| abstract_inverted_index.those | 16 |
| abstract_inverted_index.using | 97, 178 |
| abstract_inverted_index.viral | 121 |
| abstract_inverted_index.where | 39 |
| abstract_inverted_index.while | 154 |
| abstract_inverted_index.(SOTA) | 212 |
| abstract_inverted_index.Module | 143 |
| abstract_inverted_index.X-rays | 77 |
| abstract_inverted_index.binary | 112, 179, 196 |
| abstract_inverted_index.called | 137 |
| abstract_inverted_index.caused | 5 |
| abstract_inverted_index.ensure | 53 |
| abstract_inverted_index.fluids | 40 |
| abstract_inverted_index.fungi, | 8 |
| abstract_inverted_index.living | 27 |
| abstract_inverted_index.lungs, | 43 |
| abstract_inverted_index.method | 68, 186, 207 |
| abstract_inverted_index.rates. | 59 |
| abstract_inverted_index.study, | 85 |
| abstract_inverted_index.system | 92 |
| abstract_inverted_index.tasks, | 126 |
| abstract_inverted_index.visual | 73 |
| abstract_inverted_index.79.79\% | 193 |
| abstract_inverted_index.97.15\% | 191 |
| abstract_inverted_index.Channel | 139 |
| abstract_inverted_index.Spatial | 141 |
| abstract_inverted_index.affects | 12 |
| abstract_inverted_index.crucial | 51 |
| abstract_inverted_index.images. | 100 |
| abstract_inverted_index.imaging | 62 |
| abstract_inverted_index.leading | 44 |
| abstract_inverted_index.levels, | 25 |
| abstract_inverted_index.medical | 32 |
| abstract_inverted_index.nations | 21 |
| abstract_inverted_index.normal) | 116, 124 |
| abstract_inverted_index.people, | 14 |
| abstract_inverted_index.pleural | 37 |
| abstract_inverted_index.regions | 150 |
| abstract_inverted_index.results | 203 |
| abstract_inverted_index.setups, | 200 |
| abstract_inverted_index.setups. | 183 |
| abstract_inverted_index.spatial | 134, 149 |
| abstract_inverted_index.However, | 72 |
| abstract_inverted_index.ResNet50 | 106 |
| abstract_inverted_index.accuracy | 188 |
| abstract_inverted_index.achieves | 187 |
| abstract_inverted_index.approach | 170 |
| abstract_inverted_index.backbone | 109 |
| abstract_inverted_index.channels | 153, 158 |
| abstract_inverted_index.commonly | 66 |
| abstract_inverted_index.dataset, | 177 |
| abstract_inverted_index.features | 162 |
| abstract_inverted_index.increase | 57 |
| abstract_inverted_index.methods. | 213 |
| abstract_inverted_index.proposed | 169, 185, 206, 218 |
| abstract_inverted_index.publicly | 173 |
| abstract_inverted_index.relevant | 152 |
| abstract_inverted_index.removing | 155 |
| abstract_inverted_index.specific | 148 |
| abstract_inverted_index.superior | 209 |
| abstract_inverted_index.survival | 58 |
| abstract_inverted_index.viruses. | 10 |
| abstract_inverted_index.(FCSSAM), | 144 |
| abstract_inverted_index.Attention | 142 |
| abstract_inverted_index.Pneumonia | 0, 34 |
| abstract_inverted_index.Selective | 140 |
| abstract_inverted_index.attention | 135 |
| abstract_inverted_index.automatic | 94 |
| abstract_inverted_index.available | 174, 222 |
| abstract_inverted_index.backbone. | 165 |
| abstract_inverted_index.bacteria, | 7 |
| abstract_inverted_index.detection | 96 |
| abstract_inverted_index.developed | 88 |
| abstract_inverted_index.diagnosis | 49, 91 |
| abstract_inverted_index.difficult | 80 |
| abstract_inverted_index.effective | 54 |
| abstract_inverted_index.effusion, | 38 |
| abstract_inverted_index.evaluated | 167 |
| abstract_inverted_index.extracted | 161 |
| abstract_inverted_index.highlight | 146 |
| abstract_inverted_index.infection | 4 |
| abstract_inverted_index.pneumonia | 95 |
| abstract_inverted_index.pollution | 24 |
| abstract_inverted_index.treatment | 55 |
| abstract_inverted_index.(bacterial | 119 |
| abstract_inverted_index.(pneumonia | 114 |
| abstract_inverted_index.developing | 18 |
| abstract_inverted_index.diagnosing | 70 |
| abstract_inverted_index.irrelevant | 157 |
| abstract_inverted_index.mechanism, | 136 |
| abstract_inverted_index.pneumonia, | 120, 122 |
| abstract_inverted_index.pneumonia. | 71 |
| abstract_inverted_index.unhygienic | 26 |
| abstract_inverted_index.conditions, | 28 |
| abstract_inverted_index.difficulty. | 47 |
| abstract_inverted_index.examination | 74 |
| abstract_inverted_index.implemented | 131 |
| abstract_inverted_index.multi-class | 118, 181, 198 |
| abstract_inverted_index.respiratory | 3, 46 |
| abstract_inverted_index.subjective. | 82 |
| abstract_inverted_index.DenseNet-121 | 104 |
| abstract_inverted_index.insufficient | 31 |
| abstract_inverted_index.particularly | 15 |
| abstract_inverted_index.overcrowding, | 29 |
| abstract_inverted_index.respectively. | 127, 201 |
| abstract_inverted_index.classification | 125, 182, 199 |
| abstract_inverted_index.computer-aided | 90 |
| abstract_inverted_index.underdeveloped | 20 |
| abstract_inverted_index.infrastructure. | 33 |
| abstract_inverted_index.channel-specific | 133 |
| abstract_inverted_index.state-of-the-art | 211 |
| abstract_inverted_index.https://github.com/AyushRoy2001/FA-Net. | 224 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |