Fabric Defect Detection in Real World Manufacturing Using Deep Learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/info15080476
Defect detection is very important for guaranteeing the quality and pricing of fabric. A considerable amount of fabric is discarded as waste because of defects, leading to substantial annual losses. While manual inspection has traditionally been the norm for detection, adopting an automatic defect detection scheme based on a deep learning model offers a timely and efficient solution for assessing fabric quality. In real-time manufacturing scenarios, datasets lack high-quality, precisely positioned images. Moreover, both plain and printed fabrics are being manufactured in industries simultaneously; therefore, a single model should be capable of detecting defects in all kinds of fabric. So training a robust deep learning model that detects defects in fabric datasets generated during production with high accuracy and lower computational costs is required. This study uses an indigenous dataset directly sourced from Chenab Textiles, providing authentic and diverse images representative of actual manufacturing conditions. The dataset is used to train a computationally faster but lighter state-of-the-art network, i.e., YOLOv8. For comparison, YOLOv5 and MobileNetV2-SSD FPN-Lite models are also trained on the same dataset. YOLOv8n achieved the highest performance, with a mAP of 84.8%, precision of 0.818, and recall of 0.839 across seven different defect classes.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/info15080476
- OA Status
- gold
- Cited By
- 24
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401527076
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401527076Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/info15080476Digital Object Identifier
- Title
-
Fabric Defect Detection in Real World Manufacturing Using Deep LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-11Full publication date if available
- Authors
-
M Quamer Nasim, Rafia Mumtaz, Muneer Ahmad, Arshad AliList of authors in order
- Landing page
-
https://doi.org/10.3390/info15080476Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/info15080476Direct OA link when available
- Concepts
-
Artificial intelligence, Computer science, Materials scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
24Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 20, 2024: 4Per-year citation counts (last 5 years)
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401527076 |
|---|---|
| doi | https://doi.org/10.3390/info15080476 |
| ids.doi | https://doi.org/10.3390/info15080476 |
| ids.openalex | https://openalex.org/W4401527076 |
| fwci | 16.34500391 |
| type | article |
| title | Fabric Defect Detection in Real World Manufacturing Using Deep Learning |
| biblio.issue | 8 |
| biblio.volume | 15 |
| biblio.last_page | 476 |
| biblio.first_page | 476 |
| topics[0].id | https://openalex.org/T12111 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Industrial Vision Systems and Defect Detection |
| topics[1].id | https://openalex.org/T11159 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9801999926567078 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2209 |
| topics[1].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[1].display_name | Manufacturing Process and Optimization |
| topics[2].id | https://openalex.org/T12549 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9732000231742859 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image and Object Detection Techniques |
| is_xpac | False |
| apc_list.value | 1400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1515 |
| apc_paid.value | 1400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1515 |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.42397475242614746 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.36517566442489624 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C192562407 |
| concepts[2].level | 0 |
| concepts[2].score | 0.3315879702568054 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[2].display_name | Materials science |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.42397475242614746 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.36517566442489624 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/materials-science |
| keywords[2].score | 0.3315879702568054 |
| keywords[2].display_name | Materials science |
| language | en |
| locations[0].id | doi:10.3390/info15080476 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210219776 |
| locations[0].source.issn | 2078-2489 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2078-2489 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Information |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Information |
| locations[0].landing_page_url | https://doi.org/10.3390/info15080476 |
| locations[1].id | pmh:oai:doaj.org/article:6c9615ca85774f89a971fcf931ac6f8c |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Information, Vol 15, Iss 8, p 476 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/6c9615ca85774f89a971fcf931ac6f8c |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5060535354 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-7336-1018 |
| authorships[0].author.display_name | M Quamer Nasim |
| authorships[0].countries | PK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I929597975 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan |
| authorships[0].institutions[0].id | https://openalex.org/I929597975 |
| authorships[0].institutions[0].ror | https://ror.org/03w2j5y17 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I929597975 |
| authorships[0].institutions[0].country_code | PK |
| authorships[0].institutions[0].display_name | National University of Sciences and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mariam Nasim |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan |
| authorships[1].author.id | https://openalex.org/A5057042065 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0966-3957 |
| authorships[1].author.display_name | Rafia Mumtaz |
| authorships[1].countries | GB, PK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I929597975 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I73417466 |
| authorships[1].affiliations[1].raw_affiliation_string | Center for Computational Science and Mathematical Modelling, Coventry University, Priory Street, Coventry CV1 5FB, UK |
| authorships[1].institutions[0].id | https://openalex.org/I73417466 |
| authorships[1].institutions[0].ror | https://ror.org/01tgmhj36 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I73417466 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Coventry University |
| authorships[1].institutions[1].id | https://openalex.org/I929597975 |
| authorships[1].institutions[1].ror | https://ror.org/03w2j5y17 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I929597975 |
| authorships[1].institutions[1].country_code | PK |
| authorships[1].institutions[1].display_name | National University of Sciences and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Rafia Mumtaz |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Center for Computational Science and Mathematical Modelling, Coventry University, Priory Street, Coventry CV1 5FB, UK, School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan |
| authorships[2].author.id | https://openalex.org/A5081405486 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5047-1108 |
| authorships[2].author.display_name | Muneer Ahmad |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I877107187 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Roehampton, Roehampton Lane, London SW15 5PH, UK |
| authorships[2].institutions[0].id | https://openalex.org/I877107187 |
| authorships[2].institutions[0].ror | https://ror.org/043071f54 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I877107187 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | University of Roehampton |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Muneer Ahmad |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Computer Science, University of Roehampton, Roehampton Lane, London SW15 5PH, UK |
| authorships[3].author.id | https://openalex.org/A5101877790 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1842-8040 |
| authorships[3].author.display_name | Arshad Ali |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210139714 |
| authorships[3].affiliations[0].raw_affiliation_string | Software Productivity Strategists, Inc. (SPS), 2400 Research Blvd, Suite 115, Rockville, MD 20850, USA |
| authorships[3].institutions[0].id | https://openalex.org/I4210139714 |
| authorships[3].institutions[0].ror | https://ror.org/03t8z4688 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210139714 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | HCM Strategists (United States) |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Arshad Ali |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Software Productivity Strategists, Inc. (SPS), 2400 Research Blvd, Suite 115, Rockville, MD 20850, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/info15080476 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Fabric Defect Detection in Real World Manufacturing Using Deep Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12111 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Industrial Vision Systems and Defect Detection |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W4246450666, https://openalex.org/W4388998267, https://openalex.org/W2898370298, https://openalex.org/W2137437058, https://openalex.org/W4396520874, https://openalex.org/W4390401159, https://openalex.org/W2744391499, https://openalex.org/W4230250635 |
| cited_by_count | 24 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 20 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/info15080476 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210219776 |
| best_oa_location.source.issn | 2078-2489 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2078-2489 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Information |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Information |
| best_oa_location.landing_page_url | https://doi.org/10.3390/info15080476 |
| primary_location.id | doi:10.3390/info15080476 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210219776 |
| primary_location.source.issn | 2078-2489 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2078-2489 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Information |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Information |
| primary_location.landing_page_url | https://doi.org/10.3390/info15080476 |
| publication_date | 2024-08-11 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W984811894, https://openalex.org/W2070407351, https://openalex.org/W2031821661, https://openalex.org/W2129238487, https://openalex.org/W2585384933, https://openalex.org/W2145456339, https://openalex.org/W2985804193, https://openalex.org/W2963156262, https://openalex.org/W4205436162, https://openalex.org/W3162884997, https://openalex.org/W3096617446, https://openalex.org/W4289943791, https://openalex.org/W6839567147, https://openalex.org/W4288080874, https://openalex.org/W3216724652, https://openalex.org/W4293084285, https://openalex.org/W4386880201, https://openalex.org/W2963163009, https://openalex.org/W2963037989, https://openalex.org/W4388823657, https://openalex.org/W4285300999 |
| referenced_works_count | 21 |
| abstract_inverted_index.A | 13 |
| abstract_inverted_index.a | 48, 53, 85, 101, 151, 180 |
| abstract_inverted_index.In | 62 |
| abstract_inverted_index.So | 99 |
| abstract_inverted_index.an | 41, 127 |
| abstract_inverted_index.as | 20 |
| abstract_inverted_index.be | 89 |
| abstract_inverted_index.in | 81, 94, 109 |
| abstract_inverted_index.is | 2, 18, 122, 147 |
| abstract_inverted_index.of | 11, 16, 23, 91, 97, 141, 182, 185, 189 |
| abstract_inverted_index.on | 47, 170 |
| abstract_inverted_index.to | 26, 149 |
| abstract_inverted_index.For | 160 |
| abstract_inverted_index.The | 145 |
| abstract_inverted_index.all | 95 |
| abstract_inverted_index.and | 9, 55, 75, 118, 137, 163, 187 |
| abstract_inverted_index.are | 78, 167 |
| abstract_inverted_index.but | 154 |
| abstract_inverted_index.for | 5, 38, 58 |
| abstract_inverted_index.has | 33 |
| abstract_inverted_index.mAP | 181 |
| abstract_inverted_index.the | 7, 36, 171, 176 |
| abstract_inverted_index.This | 124 |
| abstract_inverted_index.also | 168 |
| abstract_inverted_index.been | 35 |
| abstract_inverted_index.both | 73 |
| abstract_inverted_index.deep | 49, 103 |
| abstract_inverted_index.from | 132 |
| abstract_inverted_index.high | 116 |
| abstract_inverted_index.lack | 67 |
| abstract_inverted_index.norm | 37 |
| abstract_inverted_index.same | 172 |
| abstract_inverted_index.that | 106 |
| abstract_inverted_index.used | 148 |
| abstract_inverted_index.uses | 126 |
| abstract_inverted_index.very | 3 |
| abstract_inverted_index.with | 115, 179 |
| abstract_inverted_index.0.839 | 190 |
| abstract_inverted_index.While | 30 |
| abstract_inverted_index.based | 46 |
| abstract_inverted_index.being | 79 |
| abstract_inverted_index.costs | 121 |
| abstract_inverted_index.i.e., | 158 |
| abstract_inverted_index.kinds | 96 |
| abstract_inverted_index.lower | 119 |
| abstract_inverted_index.model | 51, 87, 105 |
| abstract_inverted_index.plain | 74 |
| abstract_inverted_index.seven | 192 |
| abstract_inverted_index.study | 125 |
| abstract_inverted_index.train | 150 |
| abstract_inverted_index.waste | 21 |
| abstract_inverted_index.0.818, | 186 |
| abstract_inverted_index.84.8%, | 183 |
| abstract_inverted_index.Chenab | 133 |
| abstract_inverted_index.Defect | 0 |
| abstract_inverted_index.YOLOv5 | 162 |
| abstract_inverted_index.across | 191 |
| abstract_inverted_index.actual | 142 |
| abstract_inverted_index.amount | 15 |
| abstract_inverted_index.annual | 28 |
| abstract_inverted_index.defect | 43, 194 |
| abstract_inverted_index.during | 113 |
| abstract_inverted_index.fabric | 17, 60, 110 |
| abstract_inverted_index.faster | 153 |
| abstract_inverted_index.images | 139 |
| abstract_inverted_index.manual | 31 |
| abstract_inverted_index.models | 166 |
| abstract_inverted_index.offers | 52 |
| abstract_inverted_index.recall | 188 |
| abstract_inverted_index.robust | 102 |
| abstract_inverted_index.scheme | 45 |
| abstract_inverted_index.should | 88 |
| abstract_inverted_index.single | 86 |
| abstract_inverted_index.timely | 54 |
| abstract_inverted_index.YOLOv8. | 159 |
| abstract_inverted_index.YOLOv8n | 174 |
| abstract_inverted_index.because | 22 |
| abstract_inverted_index.capable | 90 |
| abstract_inverted_index.dataset | 129, 146 |
| abstract_inverted_index.defects | 93, 108 |
| abstract_inverted_index.detects | 107 |
| abstract_inverted_index.diverse | 138 |
| abstract_inverted_index.fabric. | 12, 98 |
| abstract_inverted_index.fabrics | 77 |
| abstract_inverted_index.highest | 177 |
| abstract_inverted_index.images. | 71 |
| abstract_inverted_index.leading | 25 |
| abstract_inverted_index.lighter | 155 |
| abstract_inverted_index.losses. | 29 |
| abstract_inverted_index.pricing | 10 |
| abstract_inverted_index.printed | 76 |
| abstract_inverted_index.quality | 8 |
| abstract_inverted_index.sourced | 131 |
| abstract_inverted_index.trained | 169 |
| abstract_inverted_index.FPN-Lite | 165 |
| abstract_inverted_index.accuracy | 117 |
| abstract_inverted_index.achieved | 175 |
| abstract_inverted_index.adopting | 40 |
| abstract_inverted_index.classes. | 195 |
| abstract_inverted_index.dataset. | 173 |
| abstract_inverted_index.datasets | 66, 111 |
| abstract_inverted_index.defects, | 24 |
| abstract_inverted_index.directly | 130 |
| abstract_inverted_index.learning | 50, 104 |
| abstract_inverted_index.network, | 157 |
| abstract_inverted_index.quality. | 61 |
| abstract_inverted_index.solution | 57 |
| abstract_inverted_index.training | 100 |
| abstract_inverted_index.Moreover, | 72 |
| abstract_inverted_index.Textiles, | 134 |
| abstract_inverted_index.assessing | 59 |
| abstract_inverted_index.authentic | 136 |
| abstract_inverted_index.automatic | 42 |
| abstract_inverted_index.detecting | 92 |
| abstract_inverted_index.detection | 1, 44 |
| abstract_inverted_index.different | 193 |
| abstract_inverted_index.discarded | 19 |
| abstract_inverted_index.efficient | 56 |
| abstract_inverted_index.generated | 112 |
| abstract_inverted_index.important | 4 |
| abstract_inverted_index.precisely | 69 |
| abstract_inverted_index.precision | 184 |
| abstract_inverted_index.providing | 135 |
| abstract_inverted_index.real-time | 63 |
| abstract_inverted_index.required. | 123 |
| abstract_inverted_index.detection, | 39 |
| abstract_inverted_index.indigenous | 128 |
| abstract_inverted_index.industries | 82 |
| abstract_inverted_index.inspection | 32 |
| abstract_inverted_index.positioned | 70 |
| abstract_inverted_index.production | 114 |
| abstract_inverted_index.scenarios, | 65 |
| abstract_inverted_index.therefore, | 84 |
| abstract_inverted_index.comparison, | 161 |
| abstract_inverted_index.conditions. | 144 |
| abstract_inverted_index.substantial | 27 |
| abstract_inverted_index.considerable | 14 |
| abstract_inverted_index.guaranteeing | 6 |
| abstract_inverted_index.manufactured | 80 |
| abstract_inverted_index.performance, | 178 |
| abstract_inverted_index.computational | 120 |
| abstract_inverted_index.high-quality, | 68 |
| abstract_inverted_index.manufacturing | 64, 143 |
| abstract_inverted_index.traditionally | 34 |
| abstract_inverted_index.representative | 140 |
| abstract_inverted_index.MobileNetV2-SSD | 164 |
| abstract_inverted_index.computationally | 152 |
| abstract_inverted_index.simultaneously; | 83 |
| abstract_inverted_index.state-of-the-art | 156 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5057042065, https://openalex.org/A5081405486 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I73417466, https://openalex.org/I877107187, https://openalex.org/I929597975 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.5199999809265137 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.98824148 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |