Face Recognition Bias Assessment through Quality Estimation Models Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/electronics12224649
Recent advances in facial recognition technology have achieved outstanding performance, but unconstrained face recognition remains an ongoing issue. Facial-image-quality-evaluation algorithms evaluate the quality of the input samples, providing crucial information about the accuracy of recognition decisions. By doing so, this can lead to improved results in challenging scenarios. In recent years, significant progress has been made in assessing the quality of facial images. The computation of quality scores has become highly precise and closely correlated with the model results. In this paper, we reviewed and analyzed the existing biases of cutting-edge quality-estimation techniques for face recognition. Our experimentation focused on the quality estimators developed by MagFace, FaceQNet, and SER-FIQ and were evaluated on the CelebA reference dataset. A study of bias in the face-recognition model was conducted by analyzing the quality scores presented in each article. This allowed for an examination of existing biases within both the quality estimators and the face-recognition models.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/electronics12224649
- https://www.mdpi.com/2079-9292/12/22/4649/pdf?version=1700032751
- OA Status
- gold
- Cited By
- 1
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388693944
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388693944Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/electronics12224649Digital Object Identifier
- Title
-
Face Recognition Bias Assessment through Quality Estimation ModelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-15Full publication date if available
- Authors
-
Luis Lopez Paya, Pedro Fernández de Córdoba, Angela Sanchez Perez, Javier Barrachina, Manuel Benavent-Lledó, David Mulero-Pérez, José García‐RodríguezList of authors in order
- Landing page
-
https://doi.org/10.3390/electronics12224649Publisher landing page
- PDF URL
-
https://www.mdpi.com/2079-9292/12/22/4649/pdf?version=1700032751Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2079-9292/12/22/4649/pdf?version=1700032751Direct OA link when available
- Concepts
-
Facial recognition system, Computer science, Quality (philosophy), Artificial intelligence, Face (sociological concept), Estimator, Computation, Enhanced Data Rates for GSM Evolution, Pattern recognition (psychology), Image quality, Machine learning, Quality Score, Three-dimensional face recognition, Quality assessment, Computer vision, Image (mathematics), Face detection, Statistics, Evaluation methods, Algorithm, Mathematics, Engineering, Reliability engineering, Social science, Metric (unit), Epistemology, Philosophy, Operations management, SociologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388693944 |
|---|---|
| doi | https://doi.org/10.3390/electronics12224649 |
| ids.doi | https://doi.org/10.3390/electronics12224649 |
| ids.openalex | https://openalex.org/W4388693944 |
| fwci | 0.18196834 |
| type | article |
| title | Face Recognition Bias Assessment through Quality Estimation Models |
| biblio.issue | 22 |
| biblio.volume | 12 |
| biblio.last_page | 4649 |
| biblio.first_page | 4649 |
| topics[0].id | https://openalex.org/T11448 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Face recognition and analysis |
| topics[1].id | https://openalex.org/T10057 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9991000294685364 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Face and Expression Recognition |
| topics[2].id | https://openalex.org/T10828 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9976000189781189 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Biometric Identification and Security |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C31510193 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7810001373291016 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1192553 |
| concepts[0].display_name | Facial recognition system |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7767871618270874 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2779530757 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6568053364753723 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1207505 |
| concepts[2].display_name | Quality (philosophy) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6483502388000488 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2779304628 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6483111381530762 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3503480 |
| concepts[4].display_name | Face (sociological concept) |
| concepts[5].id | https://openalex.org/C185429906 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6447224617004395 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[5].display_name | Estimator |
| concepts[6].id | https://openalex.org/C45374587 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5469997525215149 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[6].display_name | Computation |
| concepts[7].id | https://openalex.org/C162307627 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5290509462356567 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q204833 |
| concepts[7].display_name | Enhanced Data Rates for GSM Evolution |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.49694278836250305 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C55020928 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4672750234603882 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3813865 |
| concepts[9].display_name | Image quality |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4459918141365051 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C2779346075 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4202975034713745 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7268763 |
| concepts[11].display_name | Quality Score |
| concepts[12].id | https://openalex.org/C88799230 |
| concepts[12].level | 5 |
| concepts[12].score | 0.4173746705055237 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3398329 |
| concepts[12].display_name | Three-dimensional face recognition |
| concepts[13].id | https://openalex.org/C3020001037 |
| concepts[13].level | 3 |
| concepts[13].score | 0.4128914475440979 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q836575 |
| concepts[13].display_name | Quality assessment |
| concepts[14].id | https://openalex.org/C31972630 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3541649580001831 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[14].display_name | Computer vision |
| concepts[15].id | https://openalex.org/C115961682 |
| concepts[15].level | 2 |
| concepts[15].score | 0.31177303194999695 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[15].display_name | Image (mathematics) |
| concepts[16].id | https://openalex.org/C4641261 |
| concepts[16].level | 4 |
| concepts[16].score | 0.20804989337921143 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11681085 |
| concepts[16].display_name | Face detection |
| concepts[17].id | https://openalex.org/C105795698 |
| concepts[17].level | 1 |
| concepts[17].score | 0.1744307279586792 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[17].display_name | Statistics |
| concepts[18].id | https://openalex.org/C3018395757 |
| concepts[18].level | 2 |
| concepts[18].score | 0.12879231572151184 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1379672 |
| concepts[18].display_name | Evaluation methods |
| concepts[19].id | https://openalex.org/C11413529 |
| concepts[19].level | 1 |
| concepts[19].score | 0.11928531527519226 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[19].display_name | Algorithm |
| concepts[20].id | https://openalex.org/C33923547 |
| concepts[20].level | 0 |
| concepts[20].score | 0.11584529280662537 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[20].display_name | Mathematics |
| concepts[21].id | https://openalex.org/C127413603 |
| concepts[21].level | 0 |
| concepts[21].score | 0.08813565969467163 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[21].display_name | Engineering |
| concepts[22].id | https://openalex.org/C200601418 |
| concepts[22].level | 1 |
| concepts[22].score | 0.08373263478279114 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q2193887 |
| concepts[22].display_name | Reliability engineering |
| concepts[23].id | https://openalex.org/C36289849 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q34749 |
| concepts[23].display_name | Social science |
| concepts[24].id | https://openalex.org/C176217482 |
| concepts[24].level | 2 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[24].display_name | Metric (unit) |
| concepts[25].id | https://openalex.org/C111472728 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[25].display_name | Epistemology |
| concepts[26].id | https://openalex.org/C138885662 |
| concepts[26].level | 0 |
| concepts[26].score | 0.0 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[26].display_name | Philosophy |
| concepts[27].id | https://openalex.org/C21547014 |
| concepts[27].level | 1 |
| concepts[27].score | 0.0 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[27].display_name | Operations management |
| concepts[28].id | https://openalex.org/C144024400 |
| concepts[28].level | 0 |
| concepts[28].score | 0.0 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[28].display_name | Sociology |
| keywords[0].id | https://openalex.org/keywords/facial-recognition-system |
| keywords[0].score | 0.7810001373291016 |
| keywords[0].display_name | Facial recognition system |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7767871618270874 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/quality |
| keywords[2].score | 0.6568053364753723 |
| keywords[2].display_name | Quality (philosophy) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6483502388000488 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/face |
| keywords[4].score | 0.6483111381530762 |
| keywords[4].display_name | Face (sociological concept) |
| keywords[5].id | https://openalex.org/keywords/estimator |
| keywords[5].score | 0.6447224617004395 |
| keywords[5].display_name | Estimator |
| keywords[6].id | https://openalex.org/keywords/computation |
| keywords[6].score | 0.5469997525215149 |
| keywords[6].display_name | Computation |
| keywords[7].id | https://openalex.org/keywords/enhanced-data-rates-for-gsm-evolution |
| keywords[7].score | 0.5290509462356567 |
| keywords[7].display_name | Enhanced Data Rates for GSM Evolution |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.49694278836250305 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/image-quality |
| keywords[9].score | 0.4672750234603882 |
| keywords[9].display_name | Image quality |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.4459918141365051 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/quality-score |
| keywords[11].score | 0.4202975034713745 |
| keywords[11].display_name | Quality Score |
| keywords[12].id | https://openalex.org/keywords/three-dimensional-face-recognition |
| keywords[12].score | 0.4173746705055237 |
| keywords[12].display_name | Three-dimensional face recognition |
| keywords[13].id | https://openalex.org/keywords/quality-assessment |
| keywords[13].score | 0.4128914475440979 |
| keywords[13].display_name | Quality assessment |
| keywords[14].id | https://openalex.org/keywords/computer-vision |
| keywords[14].score | 0.3541649580001831 |
| keywords[14].display_name | Computer vision |
| keywords[15].id | https://openalex.org/keywords/image |
| keywords[15].score | 0.31177303194999695 |
| keywords[15].display_name | Image (mathematics) |
| keywords[16].id | https://openalex.org/keywords/face-detection |
| keywords[16].score | 0.20804989337921143 |
| keywords[16].display_name | Face detection |
| keywords[17].id | https://openalex.org/keywords/statistics |
| keywords[17].score | 0.1744307279586792 |
| keywords[17].display_name | Statistics |
| keywords[18].id | https://openalex.org/keywords/evaluation-methods |
| keywords[18].score | 0.12879231572151184 |
| keywords[18].display_name | Evaluation methods |
| keywords[19].id | https://openalex.org/keywords/algorithm |
| keywords[19].score | 0.11928531527519226 |
| keywords[19].display_name | Algorithm |
| keywords[20].id | https://openalex.org/keywords/mathematics |
| keywords[20].score | 0.11584529280662537 |
| keywords[20].display_name | Mathematics |
| keywords[21].id | https://openalex.org/keywords/engineering |
| keywords[21].score | 0.08813565969467163 |
| keywords[21].display_name | Engineering |
| keywords[22].id | https://openalex.org/keywords/reliability-engineering |
| keywords[22].score | 0.08373263478279114 |
| keywords[22].display_name | Reliability engineering |
| language | en |
| locations[0].id | doi:10.3390/electronics12224649 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210202905 |
| locations[0].source.issn | 2079-9292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2079-9292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Electronics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2079-9292/12/22/4649/pdf?version=1700032751 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Electronics |
| locations[0].landing_page_url | https://doi.org/10.3390/electronics12224649 |
| locations[1].id | pmh:oai:rua.ua.es:10045/138773 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400416 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Repositorio Institucional de la Universidad de Alicante (Universidad de Alicante) |
| locations[1].source.host_organization | https://openalex.org/I130194489 |
| locations[1].source.host_organization_name | University of Alicante |
| locations[1].source.host_organization_lineage | https://openalex.org/I130194489 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://hdl.handle.net/10045/138773 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5113047245 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Luis Lopez Paya |
| authorships[0].countries | ES |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I130194489 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Technology, University of Alicante, 03080 Alicante, Spain |
| authorships[0].institutions[0].id | https://openalex.org/I130194489 |
| authorships[0].institutions[0].ror | https://ror.org/05t8bcz72 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I130194489 |
| authorships[0].institutions[0].country_code | ES |
| authorships[0].institutions[0].display_name | University of Alicante |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Luis Lopez Paya |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Technology, University of Alicante, 03080 Alicante, Spain |
| authorships[1].author.id | https://openalex.org/A5062053931 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0347-7280 |
| authorships[1].author.display_name | Pedro Fernández de Córdoba |
| authorships[1].affiliations[0].raw_affiliation_string | Facephi Research Lab, 03001 Alicante, Spain |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Pedro Cordoba |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Facephi Research Lab, 03001 Alicante, Spain |
| authorships[2].author.id | https://openalex.org/A5111074798 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Angela Sanchez Perez |
| authorships[2].affiliations[0].raw_affiliation_string | Facephi Research Lab, 03001 Alicante, Spain |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Angela Sanchez Perez |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Facephi Research Lab, 03001 Alicante, Spain |
| authorships[3].author.id | https://openalex.org/A5060250724 |
| authorships[3].author.orcid | https://orcid.org/0009-0003-4074-3140 |
| authorships[3].author.display_name | Javier Barrachina |
| authorships[3].affiliations[0].raw_affiliation_string | Facephi Research Lab, 03001 Alicante, Spain |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Javier Barrachina |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Facephi Research Lab, 03001 Alicante, Spain |
| authorships[4].author.id | https://openalex.org/A5069445569 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8809-8476 |
| authorships[4].author.display_name | Manuel Benavent-Lledó |
| authorships[4].countries | ES |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I130194489 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Technology, University of Alicante, 03080 Alicante, Spain |
| authorships[4].institutions[0].id | https://openalex.org/I130194489 |
| authorships[4].institutions[0].ror | https://ror.org/05t8bcz72 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I130194489 |
| authorships[4].institutions[0].country_code | ES |
| authorships[4].institutions[0].display_name | University of Alicante |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Manuel Benavent-Lledo |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Technology, University of Alicante, 03080 Alicante, Spain |
| authorships[5].author.id | https://openalex.org/A5033302099 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1712-7265 |
| authorships[5].author.display_name | David Mulero-Pérez |
| authorships[5].countries | ES |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I130194489 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Computer Technology, University of Alicante, 03080 Alicante, Spain |
| authorships[5].institutions[0].id | https://openalex.org/I130194489 |
| authorships[5].institutions[0].ror | https://ror.org/05t8bcz72 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I130194489 |
| authorships[5].institutions[0].country_code | ES |
| authorships[5].institutions[0].display_name | University of Alicante |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | David Mulero-Pérez |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Computer Technology, University of Alicante, 03080 Alicante, Spain |
| authorships[6].author.id | https://openalex.org/A5079599826 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7798-3055 |
| authorships[6].author.display_name | José García‐Rodríguez |
| authorships[6].countries | ES |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I130194489 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Computer Technology, University of Alicante, 03080 Alicante, Spain |
| authorships[6].institutions[0].id | https://openalex.org/I130194489 |
| authorships[6].institutions[0].ror | https://ror.org/05t8bcz72 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I130194489 |
| authorships[6].institutions[0].country_code | ES |
| authorships[6].institutions[0].display_name | University of Alicante |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Jose Garcia-Rodriguez |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Department of Computer Technology, University of Alicante, 03080 Alicante, Spain |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2079-9292/12/22/4649/pdf?version=1700032751 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-11-16T00:00:00 |
| display_name | Face Recognition Bias Assessment through Quality Estimation Models |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11448 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Face recognition and analysis |
| related_works | https://openalex.org/W2166031825, https://openalex.org/W2918845005, https://openalex.org/W2040482211, https://openalex.org/W2058325696, https://openalex.org/W325114128, https://openalex.org/W2185537520, https://openalex.org/W3108145925, https://openalex.org/W4387163326, https://openalex.org/W1517271056, https://openalex.org/W2466958844 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/electronics12224649 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210202905 |
| best_oa_location.source.issn | 2079-9292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2079-9292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Electronics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2079-9292/12/22/4649/pdf?version=1700032751 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Electronics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/electronics12224649 |
| primary_location.id | doi:10.3390/electronics12224649 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210202905 |
| primary_location.source.issn | 2079-9292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2079-9292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Electronics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2079-9292/12/22/4649/pdf?version=1700032751 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Electronics |
| primary_location.landing_page_url | https://doi.org/10.3390/electronics12224649 |
| publication_date | 2023-11-15 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3120331640, https://openalex.org/W1502845923, https://openalex.org/W3006276840, https://openalex.org/W2096733369, https://openalex.org/W2887500939, https://openalex.org/W2963466847, https://openalex.org/W2793964976, https://openalex.org/W3174847300, https://openalex.org/W3131335993, https://openalex.org/W4312448777, https://openalex.org/W4205221484, https://openalex.org/W3199528201, https://openalex.org/W2784163702, https://openalex.org/W2913592748, https://openalex.org/W4210616471, https://openalex.org/W4386066208, https://openalex.org/W3169129566, https://openalex.org/W2969985801, https://openalex.org/W2963814162, https://openalex.org/W2962898354, https://openalex.org/W2609575245, https://openalex.org/W3206484473, https://openalex.org/W3035739915, https://openalex.org/W2167514808, https://openalex.org/W1991777678, https://openalex.org/W3026742379, https://openalex.org/W1834627138, https://openalex.org/W2515770085, https://openalex.org/W2134013617, https://openalex.org/W3101227480, https://openalex.org/W3103152812 |
| referenced_works_count | 31 |
| abstract_inverted_index.A | 117 |
| abstract_inverted_index.By | 36 |
| abstract_inverted_index.In | 48, 79 |
| abstract_inverted_index.an | 15, 139 |
| abstract_inverted_index.by | 104, 127 |
| abstract_inverted_index.in | 2, 45, 56, 121, 133 |
| abstract_inverted_index.of | 23, 33, 60, 65, 89, 119, 141 |
| abstract_inverted_index.on | 99, 112 |
| abstract_inverted_index.to | 42 |
| abstract_inverted_index.we | 82 |
| abstract_inverted_index.Our | 96 |
| abstract_inverted_index.The | 63 |
| abstract_inverted_index.and | 72, 84, 107, 109, 149 |
| abstract_inverted_index.but | 10 |
| abstract_inverted_index.can | 40 |
| abstract_inverted_index.for | 93, 138 |
| abstract_inverted_index.has | 53, 68 |
| abstract_inverted_index.so, | 38 |
| abstract_inverted_index.the | 21, 24, 31, 58, 76, 86, 100, 113, 122, 129, 146, 150 |
| abstract_inverted_index.was | 125 |
| abstract_inverted_index.This | 136 |
| abstract_inverted_index.been | 54 |
| abstract_inverted_index.bias | 120 |
| abstract_inverted_index.both | 145 |
| abstract_inverted_index.each | 134 |
| abstract_inverted_index.face | 12, 94 |
| abstract_inverted_index.have | 6 |
| abstract_inverted_index.lead | 41 |
| abstract_inverted_index.made | 55 |
| abstract_inverted_index.this | 39, 80 |
| abstract_inverted_index.were | 110 |
| abstract_inverted_index.with | 75 |
| abstract_inverted_index.about | 30 |
| abstract_inverted_index.doing | 37 |
| abstract_inverted_index.input | 25 |
| abstract_inverted_index.model | 77, 124 |
| abstract_inverted_index.study | 118 |
| abstract_inverted_index.CelebA | 114 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.become | 69 |
| abstract_inverted_index.biases | 88, 143 |
| abstract_inverted_index.facial | 3, 61 |
| abstract_inverted_index.highly | 70 |
| abstract_inverted_index.issue. | 17 |
| abstract_inverted_index.paper, | 81 |
| abstract_inverted_index.recent | 49 |
| abstract_inverted_index.scores | 67, 131 |
| abstract_inverted_index.within | 144 |
| abstract_inverted_index.years, | 50 |
| abstract_inverted_index.SER-FIQ | 108 |
| abstract_inverted_index.allowed | 137 |
| abstract_inverted_index.closely | 73 |
| abstract_inverted_index.crucial | 28 |
| abstract_inverted_index.focused | 98 |
| abstract_inverted_index.images. | 62 |
| abstract_inverted_index.models. | 152 |
| abstract_inverted_index.ongoing | 16 |
| abstract_inverted_index.precise | 71 |
| abstract_inverted_index.quality | 22, 59, 66, 101, 130, 147 |
| abstract_inverted_index.remains | 14 |
| abstract_inverted_index.results | 44 |
| abstract_inverted_index.MagFace, | 105 |
| abstract_inverted_index.accuracy | 32 |
| abstract_inverted_index.achieved | 7 |
| abstract_inverted_index.advances | 1 |
| abstract_inverted_index.analyzed | 85 |
| abstract_inverted_index.article. | 135 |
| abstract_inverted_index.dataset. | 116 |
| abstract_inverted_index.evaluate | 20 |
| abstract_inverted_index.existing | 87, 142 |
| abstract_inverted_index.improved | 43 |
| abstract_inverted_index.progress | 52 |
| abstract_inverted_index.results. | 78 |
| abstract_inverted_index.reviewed | 83 |
| abstract_inverted_index.samples, | 26 |
| abstract_inverted_index.FaceQNet, | 106 |
| abstract_inverted_index.analyzing | 128 |
| abstract_inverted_index.assessing | 57 |
| abstract_inverted_index.conducted | 126 |
| abstract_inverted_index.developed | 103 |
| abstract_inverted_index.evaluated | 111 |
| abstract_inverted_index.presented | 132 |
| abstract_inverted_index.providing | 27 |
| abstract_inverted_index.reference | 115 |
| abstract_inverted_index.algorithms | 19 |
| abstract_inverted_index.correlated | 74 |
| abstract_inverted_index.decisions. | 35 |
| abstract_inverted_index.estimators | 102, 148 |
| abstract_inverted_index.scenarios. | 47 |
| abstract_inverted_index.techniques | 92 |
| abstract_inverted_index.technology | 5 |
| abstract_inverted_index.challenging | 46 |
| abstract_inverted_index.computation | 64 |
| abstract_inverted_index.examination | 140 |
| abstract_inverted_index.information | 29 |
| abstract_inverted_index.outstanding | 8 |
| abstract_inverted_index.recognition | 4, 13, 34 |
| abstract_inverted_index.significant | 51 |
| abstract_inverted_index.cutting-edge | 90 |
| abstract_inverted_index.performance, | 9 |
| abstract_inverted_index.recognition. | 95 |
| abstract_inverted_index.unconstrained | 11 |
| abstract_inverted_index.experimentation | 97 |
| abstract_inverted_index.face-recognition | 123, 151 |
| abstract_inverted_index.quality-estimation | 91 |
| abstract_inverted_index.Facial-image-quality-evaluation | 18 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5079599826 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I130194489 |
| citation_normalized_percentile.value | 0.47266245 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |