Face Recognition Implementation on Raspberrypi Using Opencv and Python Article Swipe
Distinguishing an individual with a picture has been advanced through the broad communications. Be that as it may, it is less powerful to unique finger impression or retina examining. This report depicts the face detection and recognition smaller than normal task attempted for the visual observation and self-governance module at Plymouth college. It reports the innovations accessible in the Open-Computer-Vision (OpenCV) library and technique to execute them utilizing Python. For face identification, Haar-Cascades were utilized and for face recognition Eigenfaces, Fisherfaces and Local double example histograms were utilized. The procedure is portrayed including stream diagrams for each phase of the framework. Next, the outcomes are indicated including plots and screen-shots pursued by an exchange of experienced difficulties. The report is finished up with the creators' feeling on theventure and potential applications. This paper means to execute a face recognition programming code dependent on the strategy for Haar Cascade Classifiers and to effectively actualize this code on the Raspberry Pi stage for continuous recognition. In this paper, an endeavor to execute face acknowledgment calculation on an equipment stage, which is basic, yet productive in utilization is taken up. The product source codes for both detection and recognition of countenances are composed utilizing Opencv and Python.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3557027_code2083654.pdf?abstractid=3557027&mirid=1
- OA Status
- green
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3124032823
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3124032823Canonical identifier for this work in OpenAlex
- Title
-
Face Recognition Implementation on Raspberrypi Using Opencv and PythonWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-01Full publication date if available
- Authors
-
Manav BansalList of authors in order
- Landing page
-
https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3557027_code2083654.pdf?abstractid=3557027&mirid=1Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3557027_code2083654.pdf?abstractid=3557027&mirid=1Direct OA link when available
- Concepts
-
Computer science, Python (programming language), Eigenface, Facial recognition system, Face detection, Artificial intelligence, Workflow, Three-dimensional face recognition, Haar-like features, Computer vision, Pattern recognition (psychology), Operating system, DatabaseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3124032823 |
|---|---|
| doi | |
| ids.mag | 3124032823 |
| ids.openalex | https://openalex.org/W3124032823 |
| fwci | 0.0 |
| type | article |
| title | Face Recognition Implementation on Raspberrypi Using Opencv and Python |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12222 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.4925000071525574 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | IoT-based Smart Home Systems |
| topics[1].id | https://openalex.org/T11448 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.4893999993801117 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Face recognition and analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7914266586303711 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C519991488 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7637364864349365 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q28865 |
| concepts[1].display_name | Python (programming language) |
| concepts[2].id | https://openalex.org/C104906051 |
| concepts[2].level | 4 |
| concepts[2].score | 0.7087326049804688 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q29695 |
| concepts[2].display_name | Eigenface |
| concepts[3].id | https://openalex.org/C31510193 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6947742700576782 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1192553 |
| concepts[3].display_name | Facial recognition system |
| concepts[4].id | https://openalex.org/C4641261 |
| concepts[4].level | 4 |
| concepts[4].score | 0.5712333917617798 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11681085 |
| concepts[4].display_name | Face detection |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5605670213699341 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C177212765 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4678391218185425 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q627335 |
| concepts[6].display_name | Workflow |
| concepts[7].id | https://openalex.org/C88799230 |
| concepts[7].level | 5 |
| concepts[7].score | 0.44513756036758423 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3398329 |
| concepts[7].display_name | Three-dimensional face recognition |
| concepts[8].id | https://openalex.org/C123134398 |
| concepts[8].level | 5 |
| concepts[8].score | 0.4425497055053711 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2493819 |
| concepts[8].display_name | Haar-like features |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.42197537422180176 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.35926732420921326 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C111919701 |
| concepts[11].level | 1 |
| concepts[11].score | 0.20774537324905396 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[11].display_name | Operating system |
| concepts[12].id | https://openalex.org/C77088390 |
| concepts[12].level | 1 |
| concepts[12].score | 0.10445421934127808 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[12].display_name | Database |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7914266586303711 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/python |
| keywords[1].score | 0.7637364864349365 |
| keywords[1].display_name | Python (programming language) |
| keywords[2].id | https://openalex.org/keywords/eigenface |
| keywords[2].score | 0.7087326049804688 |
| keywords[2].display_name | Eigenface |
| keywords[3].id | https://openalex.org/keywords/facial-recognition-system |
| keywords[3].score | 0.6947742700576782 |
| keywords[3].display_name | Facial recognition system |
| keywords[4].id | https://openalex.org/keywords/face-detection |
| keywords[4].score | 0.5712333917617798 |
| keywords[4].display_name | Face detection |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5605670213699341 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/workflow |
| keywords[6].score | 0.4678391218185425 |
| keywords[6].display_name | Workflow |
| keywords[7].id | https://openalex.org/keywords/three-dimensional-face-recognition |
| keywords[7].score | 0.44513756036758423 |
| keywords[7].display_name | Three-dimensional face recognition |
| keywords[8].id | https://openalex.org/keywords/haar-like-features |
| keywords[8].score | 0.4425497055053711 |
| keywords[8].display_name | Haar-like features |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.42197537422180176 |
| keywords[9].display_name | Computer vision |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.35926732420921326 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/operating-system |
| keywords[11].score | 0.20774537324905396 |
| keywords[11].display_name | Operating system |
| keywords[12].id | https://openalex.org/keywords/database |
| keywords[12].score | 0.10445421934127808 |
| keywords[12].display_name | Database |
| language | en |
| locations[0].id | mag:3124032823 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172589 |
| locations[0].source.issn | 1556-5068 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1556-5068 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | SSRN Electronic Journal |
| locations[0].source.host_organization | https://openalex.org/I1318003438 |
| locations[0].source.host_organization_name | RELX Group (Netherlands) |
| locations[0].source.host_organization_lineage | https://openalex.org/I1318003438 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | SSRN Electronic Journal |
| locations[0].landing_page_url | https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3557027_code2083654.pdf?abstractid=3557027&mirid=1 |
| authorships[0].author.id | https://openalex.org/A5004218750 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Manav Bansal |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I303593345 |
| authorships[0].affiliations[0].raw_affiliation_string | Sir Chhotu Ram Institute of Engg. and Tech., CCS University, Meerut, Uttar Pradesh, India |
| authorships[0].institutions[0].id | https://openalex.org/I303593345 |
| authorships[0].institutions[0].ror | https://ror.org/01hzdv945 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I303593345 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Chaudhary Charan Singh University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Manav Bansal |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Sir Chhotu Ram Institute of Engg. and Tech., CCS University, Meerut, Uttar Pradesh, India |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3557027_code2083654.pdf?abstractid=3557027&mirid=1 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Face Recognition Implementation on Raspberrypi Using Opencv and Python |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-10-10T17:16:08.811792 |
| primary_topic.id | https://openalex.org/T12222 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.4925000071525574 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | IoT-based Smart Home Systems |
| related_works | https://openalex.org/W2734517179, https://openalex.org/W2370478140, https://openalex.org/W3210123377, https://openalex.org/W3033742540, https://openalex.org/W3016610597, https://openalex.org/W3125844374, https://openalex.org/W3131660489, https://openalex.org/W2388234839, https://openalex.org/W2961085883, https://openalex.org/W3034828634, https://openalex.org/W2275451816, https://openalex.org/W2615866881, https://openalex.org/W3174900790, https://openalex.org/W3086656147, https://openalex.org/W2905985952, https://openalex.org/W2970298330, https://openalex.org/W3050789738, https://openalex.org/W3125514015, https://openalex.org/W2243031023, https://openalex.org/W2404149944 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | mag:3124032823 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172589 |
| best_oa_location.source.issn | 1556-5068 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1556-5068 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | SSRN Electronic Journal |
| best_oa_location.source.host_organization | https://openalex.org/I1318003438 |
| best_oa_location.source.host_organization_name | RELX Group (Netherlands) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | SSRN Electronic Journal |
| best_oa_location.landing_page_url | https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3557027_code2083654.pdf?abstractid=3557027&mirid=1 |
| primary_location.id | mag:3124032823 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172589 |
| primary_location.source.issn | 1556-5068 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1556-5068 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | SSRN Electronic Journal |
| primary_location.source.host_organization | https://openalex.org/I1318003438 |
| primary_location.source.host_organization_name | RELX Group (Netherlands) |
| primary_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | SSRN Electronic Journal |
| primary_location.landing_page_url | https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3557027_code2083654.pdf?abstractid=3557027&mirid=1 |
| publication_date | 2019-01-01 |
| publication_year | 2019 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 136 |
| abstract_inverted_index.Be | 13 |
| abstract_inverted_index.In | 163 |
| abstract_inverted_index.It | 52 |
| abstract_inverted_index.Pi | 158 |
| abstract_inverted_index.an | 1, 112, 166, 174 |
| abstract_inverted_index.as | 15 |
| abstract_inverted_index.at | 49 |
| abstract_inverted_index.by | 111 |
| abstract_inverted_index.in | 57, 182 |
| abstract_inverted_index.is | 19, 90, 119, 178, 184 |
| abstract_inverted_index.it | 16, 18 |
| abstract_inverted_index.of | 98, 114, 196 |
| abstract_inverted_index.on | 126, 142, 155, 173 |
| abstract_inverted_index.or | 26 |
| abstract_inverted_index.to | 22, 64, 134, 150, 168 |
| abstract_inverted_index.up | 121 |
| abstract_inverted_index.For | 69 |
| abstract_inverted_index.The | 88, 117, 187 |
| abstract_inverted_index.and | 35, 46, 62, 75, 81, 108, 128, 149, 194, 202 |
| abstract_inverted_index.are | 104, 198 |
| abstract_inverted_index.for | 42, 76, 95, 145, 160, 191 |
| abstract_inverted_index.has | 6 |
| abstract_inverted_index.the | 10, 32, 43, 54, 58, 99, 102, 123, 143, 156 |
| abstract_inverted_index.up. | 186 |
| abstract_inverted_index.yet | 180 |
| abstract_inverted_index.Haar | 146 |
| abstract_inverted_index.This | 29, 131 |
| abstract_inverted_index.been | 7 |
| abstract_inverted_index.both | 192 |
| abstract_inverted_index.code | 140, 154 |
| abstract_inverted_index.each | 96 |
| abstract_inverted_index.face | 33, 70, 77, 137, 170 |
| abstract_inverted_index.less | 20 |
| abstract_inverted_index.may, | 17 |
| abstract_inverted_index.task | 40 |
| abstract_inverted_index.than | 38 |
| abstract_inverted_index.that | 14 |
| abstract_inverted_index.them | 66 |
| abstract_inverted_index.this | 153, 164 |
| abstract_inverted_index.were | 73, 86 |
| abstract_inverted_index.with | 3, 122 |
| abstract_inverted_index.Local | 82 |
| abstract_inverted_index.Next, | 101 |
| abstract_inverted_index.broad | 11 |
| abstract_inverted_index.codes | 190 |
| abstract_inverted_index.means | 133 |
| abstract_inverted_index.paper | 132 |
| abstract_inverted_index.phase | 97 |
| abstract_inverted_index.plots | 107 |
| abstract_inverted_index.stage | 159 |
| abstract_inverted_index.taken | 185 |
| abstract_inverted_index.which | 177 |
| abstract_inverted_index.Opencv | 201 |
| abstract_inverted_index.basic, | 179 |
| abstract_inverted_index.double | 83 |
| abstract_inverted_index.finger | 24 |
| abstract_inverted_index.module | 48 |
| abstract_inverted_index.normal | 39 |
| abstract_inverted_index.paper, | 165 |
| abstract_inverted_index.report | 30, 118 |
| abstract_inverted_index.retina | 27 |
| abstract_inverted_index.source | 189 |
| abstract_inverted_index.stage, | 176 |
| abstract_inverted_index.stream | 93 |
| abstract_inverted_index.unique | 23 |
| abstract_inverted_index.visual | 44 |
| abstract_inverted_index.Cascade | 147 |
| abstract_inverted_index.Python. | 68, 203 |
| abstract_inverted_index.depicts | 31 |
| abstract_inverted_index.example | 84 |
| abstract_inverted_index.execute | 65, 135, 169 |
| abstract_inverted_index.feeling | 125 |
| abstract_inverted_index.library | 61 |
| abstract_inverted_index.picture | 5 |
| abstract_inverted_index.product | 188 |
| abstract_inverted_index.pursued | 110 |
| abstract_inverted_index.reports | 53 |
| abstract_inverted_index.smaller | 37 |
| abstract_inverted_index.through | 9 |
| abstract_inverted_index.(OpenCV) | 60 |
| abstract_inverted_index.Plymouth | 50 |
| abstract_inverted_index.advanced | 8 |
| abstract_inverted_index.college. | 51 |
| abstract_inverted_index.composed | 199 |
| abstract_inverted_index.diagrams | 94 |
| abstract_inverted_index.endeavor | 167 |
| abstract_inverted_index.exchange | 113 |
| abstract_inverted_index.finished | 120 |
| abstract_inverted_index.outcomes | 103 |
| abstract_inverted_index.powerful | 21 |
| abstract_inverted_index.strategy | 144 |
| abstract_inverted_index.utilized | 74 |
| abstract_inverted_index.Raspberry | 157 |
| abstract_inverted_index.actualize | 152 |
| abstract_inverted_index.attempted | 41 |
| abstract_inverted_index.creators' | 124 |
| abstract_inverted_index.dependent | 141 |
| abstract_inverted_index.detection | 34, 193 |
| abstract_inverted_index.equipment | 175 |
| abstract_inverted_index.including | 92, 106 |
| abstract_inverted_index.indicated | 105 |
| abstract_inverted_index.portrayed | 91 |
| abstract_inverted_index.potential | 129 |
| abstract_inverted_index.procedure | 89 |
| abstract_inverted_index.technique | 63 |
| abstract_inverted_index.utilized. | 87 |
| abstract_inverted_index.utilizing | 67, 200 |
| abstract_inverted_index.accessible | 56 |
| abstract_inverted_index.continuous | 161 |
| abstract_inverted_index.examining. | 28 |
| abstract_inverted_index.framework. | 100 |
| abstract_inverted_index.histograms | 85 |
| abstract_inverted_index.impression | 25 |
| abstract_inverted_index.individual | 2 |
| abstract_inverted_index.productive | 181 |
| abstract_inverted_index.theventure | 127 |
| abstract_inverted_index.Classifiers | 148 |
| abstract_inverted_index.Eigenfaces, | 79 |
| abstract_inverted_index.Fisherfaces | 80 |
| abstract_inverted_index.calculation | 172 |
| abstract_inverted_index.effectively | 151 |
| abstract_inverted_index.experienced | 115 |
| abstract_inverted_index.innovations | 55 |
| abstract_inverted_index.observation | 45 |
| abstract_inverted_index.programming | 139 |
| abstract_inverted_index.recognition | 36, 78, 138, 195 |
| abstract_inverted_index.utilization | 183 |
| abstract_inverted_index.countenances | 197 |
| abstract_inverted_index.recognition. | 162 |
| abstract_inverted_index.screen-shots | 109 |
| abstract_inverted_index.Haar-Cascades | 72 |
| abstract_inverted_index.applications. | 130 |
| abstract_inverted_index.difficulties. | 116 |
| abstract_inverted_index.Distinguishing | 0 |
| abstract_inverted_index.acknowledgment | 171 |
| abstract_inverted_index.communications. | 12 |
| abstract_inverted_index.identification, | 71 |
| abstract_inverted_index.self-governance | 47 |
| abstract_inverted_index.Open-Computer-Vision | 59 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5004218750 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 1 |
| corresponding_institution_ids | https://openalex.org/I303593345 |
| citation_normalized_percentile.value | 0.21317786 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |