Factors affecting road crash modeling Article Swipe
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.1590/2238-1031.jtl.v9n2a3
Road accident fatalities have been on an increasing trend for the last decade or so in India. Hence traffic safety management has emerged as a topic of discussion for researchers all over the world. Hence accident modelling on different factors causing them has to be conducted. Accident modelling helps us to know the real causative agents behind an accident to occur. The effect of one cause can be greater than the other. And those causes can only be known from accident modelling. In this paper we have tried to divide this accident modelling techniques into two different categories based on the location of road i.e. accidents on urban roads and on rural roads. In both urban and rural road accident studies it was seen that mainly regression techniques like linear, multi-linear, logit and poisons regression have been used for modelling the road crashes. It was also marked that mostly authors have tried to research on one cause and go deep into it rather considering all factors at a time. From the studies it was found that speed and age along with gender has been the area of study for accident causes in urban areas whereas in rural roads mostly all authors have limited their studies to speed on roads and has been noted as the major cause of accidents in rural areas. This paper has tried to review as much papers as possible and various gaps in research along with future scope of study in this area has been indicated. Starting from the basic models like negative binomial/Poisson's model to the logistic and linear regressions to the new modeling techniques involving genetic mining and fuzzy logics have been discussed explicitly in the paper.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1590/2238-1031.jtl.v9n2a3
- https://www.scielo.br/j/jtl/a/FBg96XcQBTHG936BqMpLDZN/?lang=en&format=pdf
- OA Status
- diamond
- Cited By
- 33
- References
- 19
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W945527487
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W945527487Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1590/2238-1031.jtl.v9n2a3Digital Object Identifier
- Title
-
Factors affecting road crash modelingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-04-01Full publication date if available
- Authors
-
Malaya Mohanty, Ankit GuptaList of authors in order
- Landing page
-
https://doi.org/10.1590/2238-1031.jtl.v9n2a3Publisher landing page
- PDF URL
-
https://www.scielo.br/j/jtl/a/FBg96XcQBTHG936BqMpLDZN/?lang=en&format=pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.scielo.br/j/jtl/a/FBg96XcQBTHG936BqMpLDZN/?lang=en&format=pdfDirect OA link when available
- Concepts
-
Accident (philosophy), Transport engineering, Scope (computer science), Crash, Road accident, Accident analysis, Rural area, Logistic regression, Accident investigation, Engineering, Forensic engineering, Geography, Computer science, Political science, Philosophy, Machine learning, Epistemology, Law, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
33Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 5, 2023: 3, 2022: 5, 2021: 5Per-year citation counts (last 5 years)
- References (count)
-
19Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W945527487 |
|---|---|
| doi | https://doi.org/10.1590/2238-1031.jtl.v9n2a3 |
| ids.doi | https://doi.org/10.1590/2238-1031.jtl.v9n2a3 |
| ids.mag | 945527487 |
| ids.openalex | https://openalex.org/W945527487 |
| fwci | 2.28205128 |
| type | article |
| title | Factors affecting road crash modeling |
| biblio.issue | 2 |
| biblio.volume | 9 |
| biblio.last_page | 19 |
| biblio.first_page | 15 |
| topics[0].id | https://openalex.org/T10370 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2213 |
| topics[0].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[0].display_name | Traffic and Road Safety |
| topics[1].id | https://openalex.org/T10298 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.993399977684021 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3313 |
| topics[1].subfield.display_name | Transportation |
| topics[1].display_name | Urban Transport and Accessibility |
| topics[2].id | https://openalex.org/T11824 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9922000169754028 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2739 |
| topics[2].subfield.display_name | Public Health, Environmental and Occupational Health |
| topics[2].display_name | Injury Epidemiology and Prevention |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780289543 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7750920057296753 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q424630 |
| concepts[0].display_name | Accident (philosophy) |
| concepts[1].id | https://openalex.org/C22212356 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6995567679405212 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q775325 |
| concepts[1].display_name | Transport engineering |
| concepts[2].id | https://openalex.org/C2778012447 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6763859391212463 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1034415 |
| concepts[2].display_name | Scope (computer science) |
| concepts[3].id | https://openalex.org/C183469790 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6580701470375061 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q333501 |
| concepts[3].display_name | Crash |
| concepts[4].id | https://openalex.org/C3018122277 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5572896003723145 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q9687 |
| concepts[4].display_name | Road accident |
| concepts[5].id | https://openalex.org/C2780591428 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5094266533851624 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2493120 |
| concepts[5].display_name | Accident analysis |
| concepts[6].id | https://openalex.org/C129047720 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4676624834537506 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q175185 |
| concepts[6].display_name | Rural area |
| concepts[7].id | https://openalex.org/C151956035 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45546990633010864 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1132755 |
| concepts[7].display_name | Logistic regression |
| concepts[8].id | https://openalex.org/C3018671437 |
| concepts[8].level | 2 |
| concepts[8].score | 0.43895310163497925 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2493120 |
| concepts[8].display_name | Accident investigation |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.36908745765686035 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C77595967 |
| concepts[10].level | 1 |
| concepts[10].score | 0.35283586382865906 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3151013 |
| concepts[10].display_name | Forensic engineering |
| concepts[11].id | https://openalex.org/C205649164 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3253748416900635 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[11].display_name | Geography |
| concepts[12].id | https://openalex.org/C41008148 |
| concepts[12].level | 0 |
| concepts[12].score | 0.24852225184440613 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[12].display_name | Computer science |
| concepts[13].id | https://openalex.org/C17744445 |
| concepts[13].level | 0 |
| concepts[13].score | 0.09877088665962219 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[13].display_name | Political science |
| concepts[14].id | https://openalex.org/C138885662 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[14].display_name | Philosophy |
| concepts[15].id | https://openalex.org/C119857082 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[15].display_name | Machine learning |
| concepts[16].id | https://openalex.org/C111472728 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[16].display_name | Epistemology |
| concepts[17].id | https://openalex.org/C199539241 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[17].display_name | Law |
| concepts[18].id | https://openalex.org/C199360897 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[18].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/accident |
| keywords[0].score | 0.7750920057296753 |
| keywords[0].display_name | Accident (philosophy) |
| keywords[1].id | https://openalex.org/keywords/transport-engineering |
| keywords[1].score | 0.6995567679405212 |
| keywords[1].display_name | Transport engineering |
| keywords[2].id | https://openalex.org/keywords/scope |
| keywords[2].score | 0.6763859391212463 |
| keywords[2].display_name | Scope (computer science) |
| keywords[3].id | https://openalex.org/keywords/crash |
| keywords[3].score | 0.6580701470375061 |
| keywords[3].display_name | Crash |
| keywords[4].id | https://openalex.org/keywords/road-accident |
| keywords[4].score | 0.5572896003723145 |
| keywords[4].display_name | Road accident |
| keywords[5].id | https://openalex.org/keywords/accident-analysis |
| keywords[5].score | 0.5094266533851624 |
| keywords[5].display_name | Accident analysis |
| keywords[6].id | https://openalex.org/keywords/rural-area |
| keywords[6].score | 0.4676624834537506 |
| keywords[6].display_name | Rural area |
| keywords[7].id | https://openalex.org/keywords/logistic-regression |
| keywords[7].score | 0.45546990633010864 |
| keywords[7].display_name | Logistic regression |
| keywords[8].id | https://openalex.org/keywords/accident-investigation |
| keywords[8].score | 0.43895310163497925 |
| keywords[8].display_name | Accident investigation |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.36908745765686035 |
| keywords[9].display_name | Engineering |
| keywords[10].id | https://openalex.org/keywords/forensic-engineering |
| keywords[10].score | 0.35283586382865906 |
| keywords[10].display_name | Forensic engineering |
| keywords[11].id | https://openalex.org/keywords/geography |
| keywords[11].score | 0.3253748416900635 |
| keywords[11].display_name | Geography |
| keywords[12].id | https://openalex.org/keywords/computer-science |
| keywords[12].score | 0.24852225184440613 |
| keywords[12].display_name | Computer science |
| keywords[13].id | https://openalex.org/keywords/political-science |
| keywords[13].score | 0.09877088665962219 |
| keywords[13].display_name | Political science |
| language | en |
| locations[0].id | doi:10.1590/2238-1031.jtl.v9n2a3 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2765054071 |
| locations[0].source.issn | 2238-1031 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2238-1031 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Transport Literature |
| locations[0].source.host_organization | https://openalex.org/P4310312277 |
| locations[0].source.host_organization_name | SciELO |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310312277 |
| locations[0].source.host_organization_lineage_names | SciELO |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.scielo.br/j/jtl/a/FBg96XcQBTHG936BqMpLDZN/?lang=en&format=pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Transport Literature |
| locations[0].landing_page_url | https://doi.org/10.1590/2238-1031.jtl.v9n2a3 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5079764510 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6116-782X |
| authorships[0].author.display_name | Malaya Mohanty |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I36909309 |
| authorships[0].affiliations[0].raw_affiliation_string | [National Institute of Technology Hamirpur, Hamirpur, India] |
| authorships[0].institutions[0].id | https://openalex.org/I36909309 |
| authorships[0].institutions[0].ror | https://ror.org/01nc8zs04 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I36909309, https://openalex.org/I4210152752 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | National Institute of Technology Hamirpur |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Malaya Mohanty |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | [National Institute of Technology Hamirpur, Hamirpur, India] |
| authorships[1].author.id | https://openalex.org/A5077610631 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1789-9502 |
| authorships[1].author.display_name | Ankit Gupta |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I36909309 |
| authorships[1].affiliations[0].raw_affiliation_string | [National Institute of Technology Hamirpur, Hamirpur, India] |
| authorships[1].institutions[0].id | https://openalex.org/I36909309 |
| authorships[1].institutions[0].ror | https://ror.org/01nc8zs04 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I36909309, https://openalex.org/I4210152752 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | National Institute of Technology Hamirpur |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Ankit Gupta |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | [National Institute of Technology Hamirpur, Hamirpur, India] |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.scielo.br/j/jtl/a/FBg96XcQBTHG936BqMpLDZN/?lang=en&format=pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Factors affecting road crash modeling |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10370 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2213 |
| primary_topic.subfield.display_name | Safety, Risk, Reliability and Quality |
| primary_topic.display_name | Traffic and Road Safety |
| related_works | https://openalex.org/W3128844926, https://openalex.org/W2093820739, https://openalex.org/W2363580185, https://openalex.org/W3130908872, https://openalex.org/W2392802393, https://openalex.org/W3213984355, https://openalex.org/W3120013019, https://openalex.org/W2141313262, https://openalex.org/W2016530453, https://openalex.org/W2994449158 |
| cited_by_count | 33 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 5 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 5 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 6 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 3 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 2 |
| counts_by_year[8].year | 2017 |
| counts_by_year[8].cited_by_count | 1 |
| counts_by_year[9].year | 2016 |
| counts_by_year[9].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1590/2238-1031.jtl.v9n2a3 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2765054071 |
| best_oa_location.source.issn | 2238-1031 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2238-1031 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Transport Literature |
| best_oa_location.source.host_organization | https://openalex.org/P4310312277 |
| best_oa_location.source.host_organization_name | SciELO |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310312277 |
| best_oa_location.source.host_organization_lineage_names | SciELO |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.scielo.br/j/jtl/a/FBg96XcQBTHG936BqMpLDZN/?lang=en&format=pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Transport Literature |
| best_oa_location.landing_page_url | https://doi.org/10.1590/2238-1031.jtl.v9n2a3 |
| primary_location.id | doi:10.1590/2238-1031.jtl.v9n2a3 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2765054071 |
| primary_location.source.issn | 2238-1031 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2238-1031 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Transport Literature |
| primary_location.source.host_organization | https://openalex.org/P4310312277 |
| primary_location.source.host_organization_name | SciELO |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310312277 |
| primary_location.source.host_organization_lineage_names | SciELO |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.scielo.br/j/jtl/a/FBg96XcQBTHG936BqMpLDZN/?lang=en&format=pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Transport Literature |
| primary_location.landing_page_url | https://doi.org/10.1590/2238-1031.jtl.v9n2a3 |
| publication_date | 2015-04-01 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W2027349022, https://openalex.org/W2101231662, https://openalex.org/W2065454927, https://openalex.org/W2045411764, https://openalex.org/W1981655153, https://openalex.org/W190114072, https://openalex.org/W2101391093, https://openalex.org/W2255163736, https://openalex.org/W6673487225, https://openalex.org/W2117747083, https://openalex.org/W1008174658, https://openalex.org/W2088645710, https://openalex.org/W2076261376, https://openalex.org/W1806433441, https://openalex.org/W3125435859, https://openalex.org/W596825213, https://openalex.org/W2001836363, https://openalex.org/W205112281, https://openalex.org/W2080547725 |
| referenced_works_count | 19 |
| abstract_inverted_index.a | 24, 167 |
| abstract_inverted_index.In | 82, 113 |
| abstract_inverted_index.It | 143 |
| abstract_inverted_index.an | 6, 57 |
| abstract_inverted_index.as | 23, 213, 228, 231 |
| abstract_inverted_index.at | 166 |
| abstract_inverted_index.be | 44, 67, 77 |
| abstract_inverted_index.go | 158 |
| abstract_inverted_index.in | 15, 191, 195, 219, 236, 244, 280 |
| abstract_inverted_index.it | 121, 161, 172 |
| abstract_inverted_index.of | 26, 63, 102, 186, 217, 242 |
| abstract_inverted_index.on | 5, 37, 99, 106, 110, 154, 207 |
| abstract_inverted_index.or | 13 |
| abstract_inverted_index.so | 14 |
| abstract_inverted_index.to | 43, 50, 59, 88, 152, 205, 226, 259, 265 |
| abstract_inverted_index.us | 49 |
| abstract_inverted_index.we | 85 |
| abstract_inverted_index.And | 72 |
| abstract_inverted_index.The | 61 |
| abstract_inverted_index.age | 178 |
| abstract_inverted_index.all | 30, 164, 199 |
| abstract_inverted_index.and | 109, 116, 132, 157, 177, 209, 233, 262, 273 |
| abstract_inverted_index.can | 66, 75 |
| abstract_inverted_index.for | 9, 28, 138, 188 |
| abstract_inverted_index.has | 21, 42, 182, 210, 224, 247 |
| abstract_inverted_index.new | 267 |
| abstract_inverted_index.one | 64, 155 |
| abstract_inverted_index.the | 10, 32, 52, 70, 100, 140, 170, 184, 214, 252, 260, 266, 281 |
| abstract_inverted_index.two | 95 |
| abstract_inverted_index.was | 122, 144, 173 |
| abstract_inverted_index.From | 169 |
| abstract_inverted_index.Road | 0 |
| abstract_inverted_index.This | 222 |
| abstract_inverted_index.also | 145 |
| abstract_inverted_index.area | 185, 246 |
| abstract_inverted_index.been | 4, 136, 183, 211, 248, 277 |
| abstract_inverted_index.both | 114 |
| abstract_inverted_index.deep | 159 |
| abstract_inverted_index.from | 79, 251 |
| abstract_inverted_index.gaps | 235 |
| abstract_inverted_index.have | 3, 86, 135, 150, 201, 276 |
| abstract_inverted_index.i.e. | 104 |
| abstract_inverted_index.into | 94, 160 |
| abstract_inverted_index.know | 51 |
| abstract_inverted_index.last | 11 |
| abstract_inverted_index.like | 128, 255 |
| abstract_inverted_index.much | 229 |
| abstract_inverted_index.only | 76 |
| abstract_inverted_index.over | 31 |
| abstract_inverted_index.real | 53 |
| abstract_inverted_index.road | 103, 118, 141 |
| abstract_inverted_index.seen | 123 |
| abstract_inverted_index.than | 69 |
| abstract_inverted_index.that | 124, 147, 175 |
| abstract_inverted_index.them | 41 |
| abstract_inverted_index.this | 83, 90, 245 |
| abstract_inverted_index.used | 137 |
| abstract_inverted_index.with | 180, 239 |
| abstract_inverted_index.Hence | 17, 34 |
| abstract_inverted_index.along | 179, 238 |
| abstract_inverted_index.areas | 193 |
| abstract_inverted_index.based | 98 |
| abstract_inverted_index.basic | 253 |
| abstract_inverted_index.cause | 65, 156, 216 |
| abstract_inverted_index.found | 174 |
| abstract_inverted_index.fuzzy | 274 |
| abstract_inverted_index.helps | 48 |
| abstract_inverted_index.known | 78 |
| abstract_inverted_index.logit | 131 |
| abstract_inverted_index.major | 215 |
| abstract_inverted_index.model | 258 |
| abstract_inverted_index.noted | 212 |
| abstract_inverted_index.paper | 84, 223 |
| abstract_inverted_index.roads | 108, 197, 208 |
| abstract_inverted_index.rural | 111, 117, 196, 220 |
| abstract_inverted_index.scope | 241 |
| abstract_inverted_index.speed | 176, 206 |
| abstract_inverted_index.study | 187, 243 |
| abstract_inverted_index.their | 203 |
| abstract_inverted_index.those | 73 |
| abstract_inverted_index.time. | 168 |
| abstract_inverted_index.topic | 25 |
| abstract_inverted_index.trend | 8 |
| abstract_inverted_index.tried | 87, 151, 225 |
| abstract_inverted_index.urban | 107, 115, 192 |
| abstract_inverted_index.India. | 16 |
| abstract_inverted_index.agents | 55 |
| abstract_inverted_index.areas. | 221 |
| abstract_inverted_index.behind | 56 |
| abstract_inverted_index.causes | 74, 190 |
| abstract_inverted_index.decade | 12 |
| abstract_inverted_index.divide | 89 |
| abstract_inverted_index.effect | 62 |
| abstract_inverted_index.future | 240 |
| abstract_inverted_index.gender | 181 |
| abstract_inverted_index.linear | 263 |
| abstract_inverted_index.logics | 275 |
| abstract_inverted_index.mainly | 125 |
| abstract_inverted_index.marked | 146 |
| abstract_inverted_index.mining | 272 |
| abstract_inverted_index.models | 254 |
| abstract_inverted_index.mostly | 148, 198 |
| abstract_inverted_index.occur. | 60 |
| abstract_inverted_index.other. | 71 |
| abstract_inverted_index.paper. | 282 |
| abstract_inverted_index.papers | 230 |
| abstract_inverted_index.rather | 162 |
| abstract_inverted_index.review | 227 |
| abstract_inverted_index.roads. | 112 |
| abstract_inverted_index.safety | 19 |
| abstract_inverted_index.world. | 33 |
| abstract_inverted_index.authors | 149, 200 |
| abstract_inverted_index.causing | 40 |
| abstract_inverted_index.emerged | 22 |
| abstract_inverted_index.factors | 39, 165 |
| abstract_inverted_index.genetic | 271 |
| abstract_inverted_index.greater | 68 |
| abstract_inverted_index.limited | 202 |
| abstract_inverted_index.linear, | 129 |
| abstract_inverted_index.poisons | 133 |
| abstract_inverted_index.studies | 120, 171, 204 |
| abstract_inverted_index.traffic | 18 |
| abstract_inverted_index.various | 234 |
| abstract_inverted_index.whereas | 194 |
| abstract_inverted_index.Accident | 46 |
| abstract_inverted_index.Starting | 250 |
| abstract_inverted_index.accident | 1, 35, 58, 80, 91, 119, 189 |
| abstract_inverted_index.crashes. | 142 |
| abstract_inverted_index.location | 101 |
| abstract_inverted_index.logistic | 261 |
| abstract_inverted_index.modeling | 268 |
| abstract_inverted_index.negative | 256 |
| abstract_inverted_index.possible | 232 |
| abstract_inverted_index.research | 153, 237 |
| abstract_inverted_index.accidents | 105, 218 |
| abstract_inverted_index.causative | 54 |
| abstract_inverted_index.different | 38, 96 |
| abstract_inverted_index.discussed | 278 |
| abstract_inverted_index.involving | 270 |
| abstract_inverted_index.modelling | 36, 47, 92, 139 |
| abstract_inverted_index.categories | 97 |
| abstract_inverted_index.conducted. | 45 |
| abstract_inverted_index.discussion | 27 |
| abstract_inverted_index.explicitly | 279 |
| abstract_inverted_index.fatalities | 2 |
| abstract_inverted_index.increasing | 7 |
| abstract_inverted_index.indicated. | 249 |
| abstract_inverted_index.management | 20 |
| abstract_inverted_index.modelling. | 81 |
| abstract_inverted_index.regression | 126, 134 |
| abstract_inverted_index.techniques | 93, 127, 269 |
| abstract_inverted_index.considering | 163 |
| abstract_inverted_index.regressions | 264 |
| abstract_inverted_index.researchers | 29 |
| abstract_inverted_index.multi-linear, | 130 |
| abstract_inverted_index.binomial/Poisson's | 257 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.8500000238418579 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.88731752 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |